Featured Post

Amazon Banned My Book: This is My Response to Amazon

Logic is an enemy  and Truth is a menace. I am nothing more than a reminder to you that  you cannot destroy Truth by burnin...

29 August 2013

DNA storage: The code that could save civilisation

(Copyright: Thinkstock)
Two scientists think we can safeguard the world's knowledge against an apocalypse if we store it in DNA. How far-fetched is the idea? Ed Yong meets them to find out.
 
Living things have been storing information in DNA since the dawn of life, including the instructions for building every human, animal, bacterium and plant. The molecule itself looks like a twisting ladder, whose rungs are made of four molecules called bases that pair up in specific ways—adenine (A) with thymine (T), and cytosine (C) with guanine (G). If you can create your own strands of DNA, with the ones and zeroes of binary data converted into these As, Gs, Cs, and Ts, you have a storage medium that will never go obsolete. Sequencing machines will continue to improve and will need to be replaced, but once information is stored in DNA, that’s that.
 
In terms of information density, DNA outclasses anything we’ve been able to invent. A single gram can contain as much data as 3 million CDs. All of the world’s data would fit in the back of a minivan.
 
And once encoded into DNA, information is a doddle to copy. To transfer the contents of one hard disk into another, you need to hook both of them up to a computer and wait for minutes or hours. To transfer the contents of a tube of DNA, you dissolve it in water, suck up some of the liquid into a pipette, and squeeze it into another tube. It takes seconds. “I could copy a petabyte like this,” says Birney, who mimes depressing his thumb.