Featured Post

Amazon Banned My Book: This is My Response to Amazon

Logic is an enemy  and Truth is a menace. I am nothing more than a reminder to you that  you cannot destroy Truth by burnin...

22 December 2014

Scientific method: Defend the integrity of physics

Attempts to exempt speculative theories of the Universe from experimental verification undermine science

This year, debates in physics circles took a worrying turn. Faced with difficulties in applying fundamental theories to the observed Universe, some researchers called for a change in how theoretical physics is done. They began to argue — explicitly — that if a theory is sufficiently elegant and explanatory, it need not be tested experimentally, breaking with centuries of philosophical tradition of defining scientific knowledge as empirical. We disagree. As the philosopher of science Karl Popper argued: a theory must be falsifiable to be scientific.

Chief among the 'elegance will suffice' advocates are some string theorists. Because string theory is supposedly the 'only game in town' capable of unifying the four fundamental forces, they believe that it must contain a grain of truth even though it relies on extra dimensions that we can never observe. Some cosmologists, too, are seeking to abandon experimental verification of grand hypotheses that invoke imperceptible domains such as the kaleidoscopic multiverse (comprising myriad universes), the 'many worlds' version of quantum reality (in which observations spawn parallel branches of reality) and pre-Big Bang concepts.

These unprovable hypotheses are quite different from those that relate directly to the real world and that are testable through observations — such as the standard model of particle physics and the existence of dark matter and dark energy. As we see it, theoretical physics risks becoming a no-man's-land between mathematics, physics and philosophy that does not truly meet the requirements of any.

The multiverse is motivated by a puzzle: why fundamental constants of nature, such as the fine-structure constant that characterizes the strength of electromagnetic interactions between particles and the cosmological constant associated with the acceleration of the expansion of the Universe, have values that lie in the small range that allows life to exist. Multiverse theory claims that there are billions of unobservable sister universes out there in which all possible values of these constants can occur. So somewhere there will be a bio-friendly universe like ours, however improbable that is.

Some physicists consider that the multiverse has no challenger as an explanation of many otherwise bizarre coincidences. The low value of the cosmological constant — known to be 120 factors of 10 smaller than the value predicted by quantum field theory — is difficult to explain, for instance.

Billions of universes — and of galaxies and copies of each of us — accumulate with no possibility of communication between them or of testing their reality. But if a duplicate self exists in every multiverse domain and there are infinitely many, which is the real 'me' that I experience now? Is any version of oneself preferred over any other? How could 'I' ever know what the 'true' nature of reality is if one self favours the multiverse and another does not?

In our view, cosmologists should heed mathematician David Hilbert's warning: although infinity is needed to complete mathematics, it occurs nowhere in the physical Universe.

We agree with theoretical physicist Sabine Hossenfelder: post-empirical science is an oxymoron. Theories such as quantum mechanics and relativity turned out well because they made predictions that survived testing. Yet numerous historical examples point to how, in the absence of adequate data, elegant and compelling ideas led researchers in the wrong direction, from Ptolemy's geocentric theories of the cosmos to Lord Kelvin's 'vortex theory' of the atom and Fred Hoyle's perpetual steady-state Universe.

The consequences of overclaiming the significance of certain theories are profound — the scientific method is at stake. To state that a theory is so good that its existence supplants the need for data and testing in our opinion risks misleading students and the public as to how science should be done and could open the door for pseudoscientists to claim that their ideas meet similar requirements.

What to do about it? Physicists, philosophers and other scientists should hammer out a new narrative for the scientific method that can deal with the scope of modern physics. In our view, the issue boils down to clarifying one question: what potential observational or experimental evidence is there that would persuade you that the theory is wrong and lead you to abandoning it? If there is none, it is not a scientific theory.

Such a case must be made in formal philosophical terms. A conference should be convened next year to take the first steps. People from both sides of the testability debate must be involved.

In the meantime, journal editors and publishers could assign speculative work to other research categories — such as mathematical rather than physical cosmology — according to its potential testability. And the domination of some physics departments and institutes by such activities could be rethought.

The imprimatur of science should be awarded only to a theory that is testable. Only then can we defend science from attack.