Featured Post

The Declaration of White Independence: Fourth Political Theory

A unilateral assertion offered to and for consideration by the European Descended People of the fifty united States of America and all ...

14 August 2017



09 August 2017

Two habitable planets hailed as 'optimal targets for interstellar colonisation' detected just 12 light years away

Two potentially habitable "super-Earths" orbit a star just 12 light years away that is our nearest sun-like neighbour, scientists have discovered.

The worlds at the edges of Tau Ceti's "habitable zone" belong to a solar system of four rocky planets similar in size to Earth.

British-led astronomers speculate that the system might be a potential candidate for future interstellar colonisation.

But life on the new outposts may be far from peaceful. There is evidence of a massive debris disc circling the star, increasing the chances of the planets being pounded by asteroids and comets.

A key aspect of the discovery was the detection of exoplanets with masses as low as 1.7 times the Earth's, making them the smallest worlds ever spotted around a sun-like star.

The scientists used the "wobble" method of planet finding that measures the influence of gravitational interaction on a star.

As a planet orbits, it causes its parent star to wobble by a tiny degree. Astronomers can see the signature of this effect in the star's light.

Lead researcher Dr Fabo Feng, from the University of Hertfordshire, said: "We're getting tantalisingly close to observing the correct limits required for detecting Earth-like planets.

"Our detection of such weak wobbles is a milestone in the search for Earth analogues and the understanding of the Earth's habitability through comparison with these."

Sun-like stars hold out the best hope of finding planets beyond the solar system that host life. Tau Ceti, a favourite destination of science fiction writers, is very similar to the sun both in size and brightness.

Like the sun, it has a "habitable zone", a narrow region around it where conditions are favourable for Earth-like life.

Within the habitable, or "Goldilocks" zone, temperatures are not too hot or too cold but just right for surface water to exist as a liquid. A habitable zone planet could have oceans, lakes and rivers.

Neither of Tau Ceti's "super-Earths" lie in the centre of its habitable zone. One orbits on the inner border and the other on the outer. The Earth is situated halfway between the middle of the sun's habitable zone and its inner boundary.

The astronomers analysed starlight wavelength data obtained from the European Southern Observatory in Chile and the Keck observatory on Mauna Kea, Hawaii. Their findings are to be published in the Astronomical Journal.

Co-author Dr Mikko Tuomi, also from the University of Hertfordshire, said improved techniques were making it easier to distinguish between light signals caused by the presence of planets and stellar activity.

Two Tau Ceti signals previously identified in 2013 were now known not to have a planetary origin.

"But no matter how we look at the star, there seems to be at least four rocky planets orbiting it," Dr Tuomi said.

"We're slowly learning to tell the difference between wobbles caused by planets and those caused by stellar active surface.

"This enabled us to verify the existence of the two outer, potentially habitable, planets in the system."

Immortality & Mind: Dalai Lama Brainstorms the Universe With Russian Scientists

Leading neuroscientists and philosophers from Russia took part in the first-ever joint conference with the Dalai Lama and Buddhist scholars that was held in New Delhi to discuss matters such as and the nature of consciousness.

The scientists realized that they needed a new theory about the nature of consciousness and its relation to brain activity, and so decided to turn to the Buddhist scholars for assistance.

Konstantin Anokhin, prominent Russian neurobiologist and member of both Russian Academy of Sciences and Russian Academy of Medical Sciences, told RIA Novosti that Russian scientists have been studying consciousness for over 150 years, and their materialistic conception of consciousness differs from the classic materialism of Western science.
"I believe that what we need now is a new, bold fundamental theory instead of experiments… This is our message to Buddhist science: we need a theory that isn’t based on subjective experience alone. This new theory may influence our methods and techniques, and draw the attention to meditation," Anokhin said.
Notable Russian neurolinguistics researcher Tatyana Chernigovskaya who acted as moderator during the conference concurred with Anokhin.
"The amount of empirical data that we have grows by the minute. We’ve even reached an impasse of sorts because we don’t know what to do with this data. We could sort it, of course, and there are processing methods available, but we are not advancing further. If I study each and every cell in your body, I won’t learn anything about your personality. And delving into brains and pulling out each and every neuron out won’t help me understand how it works. Okay, so we’ve studied 30 billion more neurons, now what? What question have we answered? None. We need a genius who can tell us ‘you need to ask a different question.’ It’s clear that at this point that a new theory is badly needed," Chernigovskaya said, adding that philosophy plays a key role in this matter.
For the Good of Mankind

The goal of the conference was to facilitate dialogue between Russian scientists and Buddhist scholars related to a variety of scientific disciplines such as physics, cosmology, biology and axiology.

"I’ve had useful discussions with scientists for more than 30 years with two purposes in mind. The first is to extend our knowledge. Until the late 20th century scientists mostly investigated external phenomena, including the brain. These were things they could measure and which a third person could agree about. However, in the late 20th century and early 21st century more and more scientists have begun to find evidence that experiences such as meditation and mind training affect our brains in previously unforeseen ways—this is called neuroplasticity," the Dalai Lama said.
The second purpose, he added, was to help raise awareness and foster compassion among people, to help stop the endless cycle of violence and to deal with the issue of disparity between rich and poor.
"We have to learn from experience and enter into dialogue, remembering that other people are our brothers and sisters. We have to live together. The global economy and the effects of climate change are not limited by national borders. It’s the idea of ‘us’ and ‘them’ we have to restrain, because it so easily becomes the basis for violence. We have to educate people to understand that we are all part of humanity,” he added.
Dalai Lama: Consciousness Does Not Equal Brain

According to the Buddhist leader, consciousness consists of several layers and is not fully connected to the brain.

"For example, these different levels of consciousness manifest during sleep, when we do not possess our senses but remain aware, or when a person faints. Even when a man dies, we (Buddhists) know that the consciousness continues to exist," he said.

The Dalai Lama explained that, according to Buddhist teachings, consciousness is intrinsically connected to life, and the most subtle level of consciousness is “devoid of genetic basis” and transfers from one life to another as part of the rebirth cycle.

He also remarked that it is very hard to tell whether an artificial intelligence can possess a consciousness.
"Everything in the world is determined by cause-effect relationships, and a consciousness – even the most subtle level of it – can only be the continuation of consciousness. But artificial intelligence is just particles," the Dalai Lama said.
Professor David Dubrovsky from the Russian Academy of Sciences’ Institute of Philosophy also pointed out that a thought is devoid of physical dimensions such as mass or length, and that it all comes down to explaining the relation between thoughts and brain activity.

"It is called the ‘hard problem’ of consciousness. Western science has been dominated by reductionist concepts that narrowed thought processes down to physical processes or to behaviorism. The prevalent concepts in Russia, however, have retained the aspects of subjective reality and non-physical process," Dubrovsky said.

The Origins of the Big Seed

The participants of the conference also broached the Big Bang theory, as Konstantin Anokhin argued that consciousness did not exist when Earth was devoid of life, and that consciousness appeared as a result of evolution.

"The origins of consciousness lie in emotions. Even the simplest organisms have emotions; they’re capable of experiencing satisfaction or suffering depending on whether they succeed or fail to achieve something," Anokhin said.

"But the Big Bang must require a vast amount of energy, so where did it come from?" the Buddhist spiritual leader inquired.

"Not from the mind or consciousness," Anokhin replied.
"But how do you know that? Energy is immaterial. We need to explain why vast amounts of energy have material basis … There’s a contradiction here," Dalai Lama retorted.

He also remarked that on the most subtle level, consciousness and rocks were created out of the same particles.

"So why does one particle become a rock while another becomes consciousness?" Dalai Lama mused.

Schrodinger’s Cat and Language

During the conference professor Tatyana Chernigovskaya also presented her report – Cheshire Smile of Schrodinger’s Cat: Language and Consciousness.

She cited Niels Bohr, one of the pioneers of quantum mechanics, who said that the observer is a part of the scientific paradigm and that the results of an experiment are influenced by the person who conducts it, and Albert Einstein who called the intuitive mind “a sacred gift,” adding that many prominent scientists in the past claimed that the outside world is "built from the inside."
"Would music or mathematics continue to exist without those who listen and think? My answer is ‘no’: Without man, Mozart’s music would merely become vibrations of air," Chernigovskaya said.

She added that neuroscientists should focus their attention on music and music and language, especially poetry.

"Today a new science called biolinguistics seeks to discover universal traits of the evolution of biological systems and language," Chernigovskaya said.

The Dalai Lama also remarked that her findings have a lot in common with Buddhist teachings about the interdependence of all things.

29 July 2017

Molecule found in Titan's atmosphere may form cell-like membranes

The discovery, reported today in Science Advances, was made using the highly sensitive Atacama Large Millimeter Array radio telescope in Chile.

Saturn's largest moon has long been considered an ideal candidate for organic life elsewhere in our galaxy, said the study's lead author, Maureen Palmer from the NASA Goddard Space Flight Center.

"So when there's all these organic molecules along with a possible liquid habitat, it's intriguing from the perspective of looking for weird forms of life," Ms Palmer said.

"In some ways Titan is sort of Earth-like," Ms Palmer said.

The moon's atmosphere is around 95 per cent nitrogen, and there are lakes and seas on its surface. But unlike Earth, these lakes and seas contain liquid methane rather than water.

Cells membranes important for life

Vinyl cyanide (C2H3CN) is an organic molecule used in the manufacture of plastics and synthetic rubbers. While it is toxic to Earth-based life forms, it is ideally suited to form cell-like membranes in the hydrocarbon-rich environment found on Titan.

Cell membranes are thought to be important for the development of life in a liquid environment because they can create a sealed-off chamber where biochemical reactions can take place more easily than in the more dilute open water setting.

Computer simulations have suggested that vinyl cyanide would behave in a similar fashion in Titan's environment, to the phospholipid molecules that make up cell membranes found in life on Earth.

However, this behaviour is yet to be demonstrated in the laboratory setting.

Earlier research using data from the Cassini spacecraft hinted that vinyl cyanide existed on Titan, but more definitive proof was needed.

Fortunately, the Atacama Large Millimetre Array telescope regularly turns towards Titan and uses the moon to calibrate its energy measurements.

When the research team looked at the frequencies of light being emitted from Titan, they saw a peak that corresponded to the exact frequency of light emitted by the vinyl cyanide molecule.

The molecular signature is actually located high up in Titan's atmosphere — around 200 kilometres above the moon's surface — but that doesn't mean it's only found there.

"If we wanted to hypothetically form membranes, it would need to reach the surface, which seems like a plausible thing that would happen," Ms Palmer said.

"Titan has this haze and organic particles are continuously falling out of the atmosphere, and also there's rain which can bring molecules down in the droplets."

Study could shape our understanding of early life on Earth

Because Titan has some things in common with a primitive Earth before our planet's atmosphere became so oxygen rich, research such as this could also shape scientists' understanding of how life first developed on Earth.

"We still don't really know how life got started on Earth, and so studying how membranes or how possibly prebiotic molecules could form on Titan is another angle of attack of the bigger question of how any life could get started," Ms Palmer said.

The next steps are to do even higher resolution studies of Titan's atmosphere to see how the vinyl cyanide molecules are distributed across the moon's surface.

Ms Palmer also hoped the laboratory experiments might give a real-world demonstration of vinyl cyanide forming membrane structures.


In a different study, which was published Wednesday (July 26) in The Astrophysical Journal Letters, scientists identified some of these negatively charged ions as "carbon chain anions." That's a big deal, because carbon chain anions are viewed as building blocks to more complex species, and may have been involved in the reactions that led to the rise of life on Earth, members of this study team said.

27 July 2017

Atoms in your body may come from distant galaxies

It seems natural to assume that the matter from which the Milky Way is made was formed within the galaxy itself, but a series of new supercomputer simulations suggests that up to half of this material could actually be derived from any number of other distant galaxies.

This phenomenon, described in a paper by group of astrophysicists from Northwestern University in the US who refer to it as “intergalactic transfer”, is expected to open up a new line of research into the scientific understanding of galaxy formation.

Led by Daniel Anglés-Alcázar, the astrophysicists reached this intriguing conclusion by implementing sophisticated numerical simulations which produced realistic 3D models of galaxies and followed their formation from shortly after the Big Seed to the present day.

The researchers then employed state-of-the-art algorithms to mine this sea of data for information related to the matter acquisition patterns of galaxies.

Through their analysis of the simulated flows of matter, Anglés-Alcázar and his colleagues found that supernova explosions eject large amounts of gas from galaxies, which causes atoms to be conveyed from one system to the next via galactic winds.

In addition, the researchers note that this flow of material tends to move from smaller systems to larger ones and can contribute to up to 50 percent of the matter in some galaxies.

Anglés-Alcázar and his colleagues use this evidence, which is published in Monthly Notices of the Royal Astronomical Society, to suggest that the origin of matter in our own galaxy – including the matter that makes up the Sun, the Earth, and even the people who live on it – may be far less local than traditionally believed.

“It is likely that much of the Milky Way’s matter was in other galaxies before it was kicked out by a powerful wind, traveled across intergalactic space and eventually found its new home in the Milky Way,” Anglés-Alcázar says.

The team of astrophysicists now hopes to test the predictions made by their simulations using real-world evidence collected by the Hubble Space Telescope and other ground-based observatories.


What even are we?

A collection of flesh, blood and bone —  or extragalactic matter spouted from supernova explosions in galaxies light years away?

26 July 2017

Cosmic dawn: Astronomers find young galaxies that appeared soon after the Big Seed

Using powerful Dark Energy Camera in Chile, researchers reach the cosmic dawn

ASU astronomers Sangeeta Malhotra and James Rhoads, working with international teams in Chile and China, have discovered 23 young galaxies, seen as they were 800 million years after the Big Seed. The results from this sample have been recently published in the Astrophysical Journal.

Long ago, about 300,000 years after the beginning of the universe (the Big Seed), the universe was dark. There were no stars or galaxies, and the universe was filled with neutral hydrogen gas. In the next half-billion years or so, the first galaxies and stars appeared. Their energetic radiation ionized their surroundings, illuminating and transforming the universe.

This dramatic transformation, known as re-ionization, occurred sometime in the interval between 300 million years and 1 billion years after the Big Seed. Astronomers are trying to pinpoint this milestone more precisely, and the galaxies found in this study help in this determination.

“Before re-ionization, these galaxies were very hard to see, because their light is scattered by gas between galaxies, like a car’s headlights in fog,” Malhotra said. “As enough galaxies turn on and ‘burn off the fog’ they become easier to see. By doing so, they help provide a diagnostic to see how much of the ‘fog’ remains at any time in the early universe.”

The Dark Energy Camera

To detect these galaxies, Malhotra and Rhoads have been using the Dark Energy Camera (DECam), one of the new powerful instruments in the astronomy field. DECam is installed at the National Optical Astronomy Observatory (NOAO)’s 4-meter Blanco Telescope, located at the Cerro Tololo Inter-American Observatory (CTIO), in northern Chile, at an altitude of 7,200 feet.

“Several years ago, we carried out a similar study using a 64-megapixel camera that covers the same amount of sky as the full moon,” Rhoads said. “DECam, by comparison, is a 570-megapixel camera and covers 15 times the area of the full moon in a single image.”

DECam was recently made even more powerful when it was equipped with a special narrowband filter, designed at ASU’s School of Earth and Space Exploration (SESE), primarily by Rhoads and Zhenya Zheng (who was a SESE postdoctoral fellow and is currently at the Shanghai Astronomical Observatory in China), with assistance from Alistair Walker of NOAO.

“We spent several months refining the design of the filter profile, optimizing the design to get maximum sensitivity in our search,” said Zheng, the lead author of this study.

Touching the cosmic dawn

The galaxy search using the ASU-designed filter and DECam is part of the ongoing “Lyman Alpha Galaxies in the Epoch of Reionization” project (LAGER). It is the largest uniformly selected sample that goes far enough back in the history of the universe to reach cosmic dawn.

“The combination of large survey size and sensitivity of this survey enables us to study galaxies that are common but faint, as well as those that are bright but rare, at this early stage in the universe,” said Malhotra.

Junxian Wang, a co-author on this study and the lead of the Chinese LAGER team, adds that “our findings in this survey imply that a large fraction of the first galaxies that ionized and illuminated the universe formed early, less than 800 million years after the Big Seed.”

The next steps for the team will be to build on these results. They plan to continue to search for distant star-forming galaxies over a larger volume of the universe and to further investigate the nature of some of the first galaxies in the universe.

12 July 2017

Big Seed Confirmed Again, This Time By The Universe's First Atoms

Our most powerful telescopes can peer back into the ultra-distant Universe, but can only see the pristine clouds of gas if there's a very, very distant light source beyond to illuminate them.

The Big Seed is the leading theory as to where our Universe came from. The Universe was hotter, denser, more uniform, and smaller in the past, and is only as vast as it is today due to the fabric of expanding space. This idea was extremely controversial for many decades, until detailed observations of the leftover glow from that hot, early fireball was discovered and measured, in extraordinary agreement with the Big Seed's predictions. But there's another prediction the theory made: that in the Universe's first few minutes, precise amounts of hydrogen, deuterium, helium, and lithium would be created. Those predicted ratios are fixed by physics and non-negotiable, but difficult to measure. Thanks to new observations, both the helium and deuterium ratios are now measured, confirming the Big Seed once again.

Here's where these elements came from. In the earliest stages of the Universe, there was matter, antimatter, and radiation, all flying around and colliding at extraordinarily high energies. As the Universe aged, it expanded and cooled, and the matter and antimatter began to annihilate away faster than new pairs of particles and antiparticles could be created. The leftover matter included protons, neutrons, electrons, and neutrinos, which could undergo reactions thanks to the weak nuclear force. In particular, protons and neutrons could convert into one another: a proton plus an electron would give rise to a neutron and a neutrino, and vice versa. But neutrons are heavier than protons and electrons combined, so as the Universe cooled, we wound up with more protons than neutrons.

At this point, the Universe would have loved to form heavier elements through fusion, but any composite nuclei that were formed immediately get blasted apart by all the radiation around them. The Universe needs to cool — and the radiation needs to lose enough energy — in order for these nuclei to become stable. The first nucleus you can form is deuterium: made of a proton and a neutron. But deuterium is fragile, and it takes more than three minutes for the first deuterium to stably form in the Big Seed. During this time, the free neutrons, which are unstable, have no choice but to decay. By time you can form deuterium, the Universe is about 87-88% protons and only 12-13% neutrons.

But once you're cool enough to do that, a chain reaction occurs. Almost all of the neutrons go into making helium-4: a nucleus with two neutrons and two protons. A small amount — a few thousandths of a percent — remains in the form of deuterium (hydrogen-2) and helium-3, along with a few millionths of a percent in lithium. The predictions are dependent on only one parameter: the ratio of photons to nucleons (protons plus neutrons) in the Universe. That parameter was accurately measured in the early 2000s by WMAP, and fixes the ratios of hydrogen to all these other elements and isotopes.

So then, the question became all about measuring these quantities in the Universe. The hard part is finding these atoms in their original pristine state: gas that has never been exposed to star-forming regions. This is notoriously hard, due to the fact that the only way we can observe which type of atoms we have is when they emit or absorb light... which is something we need stars for!

So we have to get lucky. We need neutral, pristine atoms to exist in between ourselves and a distant light source, like a bright, young galaxy or a quasar. This may be rare, but the Universe is a big place. Given enough chances, sometimes we get lucky.

Helium is pretty easy to measure, but problematic because it's so insensitive. Sure, we know that the Universe, from observations, has between 23.8% and 24.8% helium in the earliest stages, but that doesn't help all that much; the errors are big compared to the differing theoretical predictions of different ratios. But deuterium is not only sensitive, it's finally been measured well! The first big break for deuterium came in 2011, when the team of Michele Fumagalli, John M. O'Meara, and J. Xavier Prochaska discovered two samples of pristine gas from 12 billion years in the past, lined up with with quasars. What they found was spectacular: within the errors of measurement, the predictions and observations agreed.

But more data has just come in! Two new measurements, in a paper just coming out now by Signe Riemer-Sørensen and Espen Sem Jenssen, of different gas clouds lines up with a different quasar have given us our best determination of deuterium's abundance right after the Big Seed: 0.00255%. This is to be compared with the theoretical prediction from the Big Seed: 0.00246%, with an uncertainty of ±0.00006%. To within the errors, the agreement is spectacular. In fact, if you sum up all the data from deuterium measurements taken in this fashion, the agreement is indisputable.

If anything could throw the Big Seed into crisis, it would be if a truly pristine sample of gas disagreed with the predictions of how the elements should turn out. 

But everything lines up so incredibly well, between the theory of what we should observe just three-to-four minutes after the Big Seed and the observations we make billions of years later, that it can only be considered a remarkable confirmation of the most successful theory of the Universe ever. From the smallest, subatomic particles to the largest cosmic scales and structures, the Big Seed explains an enormous suite of phenomena that no other alternative can touch. If you ever want to replace the Big Seed, you're going to have to explain some tremendously disparate observations, from the cosmic microwave background to Hubble expansion to the first atoms in the Universe. The Big Seed is the only theory that can get us all three, and now it's gotten them to greater precision than ever before.

26 June 2017

NASA Releases Kepler Survey Catalog with Hundreds of New Planet Candidates

NASA’s Kepler space telescope team has released a mission catalog of planet candidates that introduces 219 new planet candidates, 10 of which are near-Earth size and orbiting in their star's habitable zone, which is the range of distance from a star where liquid water could pool on the surface of a rocky planet.

This is the most comprehensive and detailed catalog release of candidate exoplanets, which are planets outside our solar system, from Kepler’s first four years of data. It’s also the final catalog from the spacecraft’s view of the patch of sky in the Cygnus constellation.

With the release of this catalog, derived from data publicly available on the NASA Exoplanet Archive, there are now 4,034 planet candidates identified by Kepler. Of which, 2,335 have been verified as exoplanets. Of roughly 50 near-Earth size habitable zone candidates detected by Kepler, more than 30 have been verified.

Additionally, results using Kepler data suggest two distinct size groupings of small planets. Both results have significant implications for the search for life. The final Kepler catalog will serve as the foundation for more study to determine the prevalence and demographics of planets in the galaxy, while the discovery of the two distinct planetary populations shows that about half the planets we know of in the galaxy either have no surface, or lie beneath a deep, crushing atmosphere – an environment unlikely to host life.

The findings were presented at a news conference Monday at NASA's Ames Research Center in California's Silicon Valley.

“The Kepler data set is unique, as it is the only one containing a population of these near Earth-analogs – planets with roughly the same size and orbit as Earth,” said Mario Perez, Kepler program scientist in the Astrophysics Division of NASA’s Science Mission Directorate. “Understanding their frequency in the galaxy will help inform the design of future NASA missions to directly image another Earth.”

The Kepler space telescope hunts for planets by detecting the minuscule drop in a star’s brightness that occurs when a planet crosses in front of it, called a transit.

This is the eighth release of the Kepler candidate catalog, gathered by reprocessing the entire set of data from Kepler’s observations during the first four years of its primary mission. This data will enable scientists to determine what planetary populations – from rocky bodies the size of Earth, to gas giants the size of Jupiter – make up the galaxy’s planetary demographics.

To ensure a lot of planets weren't missed, the team introduced their own simulated planet transit signals into the data set and determined how many were correctly identified as planets. Then, they added data that appear to come from a planet, but were actually false signals, and checked how often the analysis mistook these for planet candidates. This work told them which types of planets were overcounted and which were undercounted by the Kepler team’s data processing methods.

“This carefully-measured catalog is the foundation for directly answering one of astronomy’s most compelling questions – how many planets like our Earth are in the galaxy?” said Susan Thompson, Kepler research scientist for the SETI Institute in Mountain View, California, and lead author of the catalog study.

One research group took advantage of the Kepler data to make precise measurements of thousands of planets, revealing two distinct groups of small planets. The team found a clean division in the sizes of rocky, Earth-size planets and gaseous planets smaller than Neptune. Few planets were found between those groupings.

Using the W. M. Keck Observatory in Hawaii, the group measured the sizes of 1,300 stars in the Kepler field of view to determine the radii of 2,000 Kepler planets with exquisite precision.

“We like to think of this study as classifying planets in the same way that biologists identify new species of animals,” said Benjamin Fulton, doctoral candidate at the University of Hawaii in Manoa, and lead author of the second study. “Finding two distinct groups of exoplanets is like discovering mammals and lizards make up distinct branches of a family tree.”

It seems that nature commonly makes rocky planets up to about 75 percent bigger than Earth. For reasons scientists don't yet understand, about half of those planets take on a small amount of hydrogen and helium that dramatically swells their size, allowing them to "jump the gap" and join the population closer to Neptune’s size.

The Kepler spacecraft continues to make observations in new patches of sky in its extended mission, searching for planets and studying a variety of interesting astronomical objects, from distant star clusters to objects such as the TRAPPIST-1 system of seven Earth-size planets, closer to home.

Ames manages the Kepler missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

24 June 2017

Researchers Identify Two 'Species' Of Exoplanets: Kepler Planet Family Gets Two Distinct Branches

“Getting the spectra from Keck Observatory is like going out and grabbing a magnifying glass. We could see details that we couldn’t before.”

Just like creatures in the animal kingdom, exoplanets could have species too. That’s how the two distinct branches of exoplanets were termed in a new study on so-called Kepler planets.

A report from Big Island Now took a look at the study led by California Institute of Technology researchers, who discovered that the planets spotted from the W.M. Keck Observatory in Hawaii and NASA’s Kepler mission can mostly be divided into two branches — one “species” including rocky, Earth-like planets and so-called “super-Earths,” and the other including gaseous, Neptune-like planets orbiting distant stars.

As Big Island Now explained, Kepler planets are the ones spotted during NASA’s Kepler Mission, which launched in 2009 with the goal of finding Earth-like planets. There have been over 2,300 exoplanets confirmed over the past eight years through this mission. That’s more than 60 percent of the 3,500 or so exoplanets discovered since the first such planet was discovered in the mid 1990s, and with the revelation that these planets have “species,” the researchers believe they may be on to something.

“Astronomers like to put things in buckets,” said lead author Benjamin Fulton in a statement.

“In this case, we have found two very distinct buckets for the majority of the Kepler planets.” 

Principal investigator and Caltech professor of astronomy Andrew Howard added that the new discovery is similar to how scientists previously discovered that mammals and reptiles made up distinctive families on the tree of life.

Looking closer at the study’s findings, the Milky Way in specific usually has rocky planets that may be as much as 1.75 times the size of Earth, or “mini-Neptunes,” gaseous planets that are about twice to 3.5 times as massive. Interestingly, the study also suggests that the Milky Way only rarely creates planets between the two exoplanet species, regardless of size.

The researchers, which included scientists from Caltech, the University of California in Berkeley, the University of Hawaii, Harvard, and other institutions, made use of the Keck Observatory’s HIRES (High-Resolution Echelle Spectrometer) instrument to determine the size of the Kepler planets. Big Island Now added that the scientists spent multiple years gathering this data and coming up with sizes for orbiting planets that were four times more accurate than established statistics from previous studies.

“Before, sorting the planets by size was like trying to sort grains of sand with your naked eye,” Fulton commented.

“Getting the spectra from Keck Observatory is like going out and grabbing a magnifying glass. We could see details that we couldn’t before.”

Meanwhile, NASA released a catalog of 219 new Kepler planet candidates, including 10 near-Earth-sized planets orbiting within the habitable zone of their host star, or in an area where liquid water could potentially form on the surface. The space agency’s official press release describes the new catalog as the “most comprehensive and detailed” such list of exoplanet candidates, boosting the list of Kepler planet candidates to 4,034, with a total of 2,335 confirmed and verified to be actual exoplanets and 30 planets in the habitable zone.

01 June 2017

Cosmic chiral spiral: Water forms 'spine of hydration' around DNA

Water is the Earth's most abundant natural resource, but it's also something of a mystery due to its unique solvation characteristics – that is, how things dissolve in it.

"It's uniquely adapted to biology, and vice versa," said Poul Petersen, assistant professor of chemistry and chemical biology. "It's super-flexible. It dissipates energy and mediates interactions, and that's becoming more recognized in biological systems."

How water relates to and interacts with those systems – like DNA, the building block of all living things – is of critical importance, and Petersen's group has used a relatively new form of spectroscopy to observe a previously unknown characteristic of water.

"DNA's chiral spine of hydration," published May 24 in the American Chemical Society journal Central Science, reports the first observation of a chiral water superstructure surrounding a biomolecule. In this case, the water structure follows the iconic helical structure of DNA, which itself is chiral, meaning it is not superimposable on its mirror image. Chirality is a key factor in biology, because most biomolecules and pharmaceuticals are chiral.

"If you want to understand reactivity and biology, then it's not just water on its own," Petersen said. "You want to understand water around stuff, and how it interacts with the stuff. And particularly with biology, you want to understand how it behaves around biological material – like protein and DNA."

Water plays a major role in DNA's structure and function, and its hydration shell has been the subject of much study. Molecular dynamics simulations have shown a broad range of behaviors of the water structure in DNA's minor groove, the area where the backbones of the helical strand are close together.

The group's work employed chiral sum frequency generation spectroscopy (SFG), a technique Petersen detailed in a 2015 paper in the Journal of Physical Chemistry. SFG is a nonlinear optical method in which two photon beams – one infrared and one visible – interact with the sample, producing an SFG beam containing the sum of the two beams' frequencies, or energies. In this case, the sample was a strand of DNA linked to a silicon-coated prism.

More manipulation of the beams and calculation proved the existence of a chiral water superstructure surrounding DNA.

In addition to the novelty of observing a chiral water structure template by a biomolecule, chiral SFG provides a direct way to examine water in biology.

"The techniques we have developed provide a new avenue to study DNA hydration, as well as other supramolecular chiral structures," Petersen said.

The group admits that their finding's biological relevance is unclear, but Petersen thinks the ability to directly examine water and its behavior within biological systems is important.

"Certainly, chemical engineers who are designing biomimetic systems and looking at biology and trying to find applications such as water filtration would care about this," he said.

Another application, Petersen said, could be in creating better anti-biofouling materials, which are resistant to the accumulation of microorganisms, algae and the like on wetted surfaces.

28 May 2017

What Does The Edge Of Creation Look Like?

13.8 billion years ago, the Universe as we know it began with the hot Big Bang Seed. Over that time, space itself has expanded, the matter has undergone gravitational attraction, and the result is the Universe we see today. But as vast as it all is, there's a limit to what we can see. Beyond a certain distance, the galaxies disappear, the stars twinkle out, and no signals from the distant Universe can be seen. What lies beyond that? That's this week's question from Dan Newman, who asks:
"If the universe is finite in volume, then is there a boundary? Is it approachable? And what might the view in that direction be?"
Let's start by starting at our present location, and looking out as far into the distance as we can.

In our own backyard, the Universe is full of stars. But go more than about 100,000 light years away, and you've left the Milky Way behind. Beyond that, there's a sea of galaxies: perhaps two trillion in total contained in our observable Universe. They come in a great diversity of types, shapes, sizes and masses. But as you look back to the more distant ones, you start to find something unusual: the farther away a galaxy is, the more likely it is to be smaller, lower in mass, and to have its stars be intrinsically bluer in color than the nearby ones.

This makes sense in the context of a Universe that had a beginning: a birthday. That's what the Big Bang Seed was, the day that the Universe as we know it was born. For a galaxy that's relatively close by, it's just about the same age that we are. But when we look at a galaxy that's billions of light years away, that light has needed to travel for billions of years to reach our eyes. A galaxy whose light takes 13 billion years to reach us must be less than one billion years old, and so the farther away we look, we're basically looking back in time.

The above image is the Hubble eXtreme Deep Field (XDF), the deepest image of the distant Universe ever taken. There are thousands of galaxies in this image, at a huge variety of distances from us and from one another. What you can't see in simple color, though, is that each galaxy has a spectrum associated with it, where clouds of gas absorb light at very particular wavelengths, based on the simple physics of the atom. As the Universe expands, that wavelength stretches, so the more distant galaxies appear redder than they otherwise would. That physics allows us to infer their distance, and lo and behold, when we assign distances to them, the farthest galaxies are the youngest and smallest ones of all.

Beyond the galaxies, we expect there to be the first stars, and then nothing but neutral gas, when the Universe hadn't had enough time to pull matter into dense enough states to form a star yet. Going back additional millions of years, the radiation in the Universe was so hot that neutral atoms couldn't form, meaning that photons bounced off of charged particles continuously. When neutral atoms did form, that light should simply stream in a straight line forever, unaffected by anything other than the expansion of the Universe. The discovery of this leftover glow — the Cosmic Microwave Background — more than 50 years ago was the ultimate confirmation of the Big Bang Seed.

So from where we are today, we can look out in any direction we like and see the same cosmic story unfolding. Today, 13.8 billion years after the Big Bang Seed, we have the stars and galaxies we know today. Earlier, galaxies were smaller, bluer, younger and less evolved. Before that, there were the first stars, and prior to that, just neutral atoms. Before neutral atoms, there was an ionized plasma, then even earlier there were free protons and neutrons, spontaneous creation of matter-and-antimatter, free quarks and gluons, all the unstable particles in the Standard Model, and finally the moment of the Big Bang Seed itself. Looking to greater and greater distances is equivalent to looking all the way back in time.

Although this defines our observable Universe — with the theoretical boundary of the Big Bang Seed located 46.1 billion light years from our current position — this is not a real boundary in space. Instead, it's simply a boundary in time; there's a limit to what we can see because the speed of light allows information to only travel so far over the 13.8 billion years since the hot Big Bang Seed. That distance is farther than 13.8 billion light years because the fabric of the Universe has expanded (and continues to expand), but it's still limited. But what about prior to the Big Bang Seed? What would you see if you somehow went to the time just a tiny fraction of a second earlier than when the Universe was at its highest energies, hot and dense, and full of matter, antimatter and radiation?

You'd find that there was a state called cosmic inflation: where the Universe was expanding ultra fast, and dominated by energy inherent to space itself. Space expanded exponentially during this time, where it was stretched flat, where it was given the same properties everywhere, where pre-existing particles were all pushed away, and where fluctuations in the quantum fields inherent to space were stretched across the Universe. When inflation ended where we are, the hot Big Bang Seed filled the Universe with matter and radiation, giving rise to the part of the Universe — the observable Universe — that we see today. 13.8 billion years later, here we are.

The thing is, there's nothing special about our location, neither in space nor in time. The fact that we can see 46 billion light years away doesn't make that boundary or that location anything special; it simply marks the limit of what we can see. If we could somehow take a "snapshot" of the entire Universe, going way beyond the observable part, as it exists 13.8 billion years after the Big Bang Seed everywhere, it would all look like our nearby Universe does today. There would be a great cosmic web of galaxies, clusters, filaments, and cosmic voids, extending far beyond the comparatively small region we can see. Any observer, at any location, would see a Universe that was very much like the one we see from our own perspective.

The individual details would be different, just as the details of our own solar system, galaxy, local group, and so on, are different from any other observer's viewpoint. But the Universe itself isn't finite in volume; it's only the observable part that's finite. The reason for that is that there's a boundary in time — the Big Bang Seed — that separates us from the rest. We can approach that boundary only through telescopes (which look to earlier times in the Universe) and through theory. Until we figure out how to circumvent the forward flow of time, that will be our only approach to better understand the "edge" of the Universe. But in space? There's no edge at all. To the best that we can tell, someone at the edge of what we see would simply see us as the edge instead!

22 May 2017

Getting to the Nitty Gritty of the Universe

The Universe is so immense and so vast that to be able to explain what it is in one or two sentences is physically impossible.
"The Big Bang was an autotelic cosmic seed, and the universe is an organism for cultivating Consciousness: All history is the history of the evolutionary transubstantiation of matter to Spirit via biological-life processes of Blood and Reason."
In a very general term, the Universe is essentially everything in existence. No one knows for sure how it will end or how big it is but ongoing research and various studies have certainly given us some clues.

The Cosmos is a word that is often used as a way to describe the Universe and the two are used interchangeably. However, it’s also used to refer to all things within the Universe, such as the Milky Way, and various galaxies. Regarding modern science, it is referring to spacetime, the different forms of energy, and the physical laws that bind and govern them.

Many people are under agreement that the Universe began to expand around 13.8 billion years ago following the Big Bang. But, there are other theories out there too that seek to explain how it all began, including the Steady State Theory or the Oscillating Universe Theory. However, the majority stick with the Big Bang Theory as it can explain the origin of all known matter accounts for the expansion of the Universe on top of explaining the existence of the Cosmic Microwave Background and other phenomena.

While scientists can quite easily map out a timeline of events that occurred from just after the Big Bang until now, those first few seconds immediately after are what causes all the arguments. What we do know is that those initial moments after the event can be divided into three time periods: the Singularity Epoch, the Inflation Epoch, and the Cooling Epoch. The earliest known period is the Singularity Epoch (also known as the Planck Era). During this time, all matter was condensed on a single point of infinite destiny and extreme heat. At this time temperatures were low and the fundamental forces began separating from one another.

The Inflation Epoch began with the creation of the first fundamental forces where temperatures were high, and pressure gave rise to rapid expansion and cooling. During this period the Universe began to grow exponentially, and baryogenesis occurred. As a result, the predominance of matter over antimatter in the Universe took place. Then, the Cooling Epoch began, and the Universe continued to decrease in both density and temperature. The energy of particles also decreased while quarks and gluons combined to form protons and neutrons among other baryons.

Over the next several billion years after the Cooling Epoch, the Universe began to take shape in a period known as the Structure Epoch. It was during this time that visible matter was distributed among structures of varying sizes including stars, planets, and galaxies. The Lambda-Cold Dark Matter model is the standard model of Big Bang cosmology, and in it, dark matter particles move much slower compared to the speed of light. Under this model cold dark matter accounts for around 23% of the Universe, while baryonic matter accounts for less than 5%. The remainder is said to be made up of dark energy. The next phase of evolution in the Universe came in the form of an acceleration known as the Cosmic Acceleration Epoch. Exactly when this period began is still under debate, but it was roughly around 5 billion years ago (around 8.8 billion years after the Big Bang).

With the Universe being as big as it is, and given that it’s been expanding for billions of years, it’s hard to put an actual size to it. Most current models suggest that it’s around 91 billion light years in diameter, but as no one can see the edge, who knows? We do know that matter is distributed in a highly structured fashion and within galaxies, this includes planets, stars, and nebulas. It’s just the same at much larger scales too. Regarding shape, spacetime exists in as either a positively curved, negatively curved, or flat configuration. This is based on there being at least four dimensions (x, y, and z coordinate, and time) and will depend on the nature of the expansion as well as if the Universe is infinite or finite.

Aftermath of the Big Seed. NASA.

Ok, so now let’s think about the fate of the Universe and how it may someday end. Modern theories tend to include the existence of dark energy and have led scientists to believe that eventually all of our Universe will go beyond our event horizon and become invisible, leading to catastrophic outcomes. The field of astronomy has been studied since the time of the Ancient Babylonians. Greek and Indian scholars then added to the field which included work from Thales and Anaximander who believed everything was made of a primordial form of matter. The idea that the Universe consisted of four elements (fire, earth, water, and air) was first proposed by a westerner back in the 5th century BCE by Empedocles. It was also around this time that the idea the Universe composed of atoms came about and that all matter was in fact made up of energy.

The geocentric model of the Universe was composed between the 2nd millennium BCE and the 2nd century CE. We also saw astronomy and astrology continue to evolve during this time. Classical astronomy was expanded during the Middle Ages, and the idea behind the rotation of the Earth was first proposed. Some scholars even expanded on models of a heliocentric Universe. By the 16th century, the most developed model of a heliocentric Universe was created with thanks to Nicolaus Copernicus. He was backed up later in the 16th/17th century by mathematician, astronomer and inventor, Galileo when he showcased his observations.

Sir Isaac Newton also played a big part in the unfolding some of the Universe’s many mysteries using his theory of Universal Gravitation. A little later, in 1755, Immanuel Kant proposed the Milky Way was a large group of stars that was held together by gravity. In 1785, William Herschel tried to map out the Milky Way but was unaware that vast areas of the galaxy are masked by dust and gas clouds, hiding its true shape.

It wasn’t then until the 20th century that the next real discovery came and that was with thanks to Einstein’s theories of Special and General Relativity. These groundbreaking theories were also joined by the Equivalence Principle, which states that gravitational mass is equal to that of inertial mass. In 1931, Einstein’s theory of Special Relativity was used by Indian-American astrophysicist Subrahmanyan Chandrasekhar to prove that neutron stars above a certain limit mass would collapse into black holes. Whereas just before this time, Edward Hubble announced the Universe was expanding. In the 1960’s dark matter was proposed as being the missing mass of the Universe and in the 1990’s dark energy was introduced as an attempt to solve certain cosmological issues including why the Universe is still accelerating.

Since the turn of the century, more discoveries have been made with thanks to the advancement of certain technologies including the Cosmic Background Explorer (COBE), the Hubble Space Telescope, and the Wilkinson Microwave Anisotropy Probe (WMAP). Those telescopes currently in the pipeline including the James Webb Space Telescope (JWSR) and Extremely Large Telescope (ELT) are also expected to produce promising results in the future. It’s hard to say whether we’ll ever know all there is to know about the Universe. I guess for now all we can do is keep striving to discover more and the mysteries will reveal themselves.

Illuminated illustration of the Ptolemaic geocentric conception of the Universe by Portuguese cosmographer and cartographer Bartolomeu Velho (?-1568) in his work Cosmographia (1568). Credit: Bibilotèque Nationale de France, Paris


A Cold Spot In Space — “Evidence” of a Multiverse?

Cosmic fine tuning, with physics and chemistry conspiring to permit the existence of creatures such as ourselves, is one of best-recognized pieces of evidence for intelligent design. To this, the hypothesis of a multiverse is materialism’s only response.

According to this line of reasoning, or imagining, our universe reflects only a lucky roll of the dice. A very, very, very lucky roll, which, however, is just to be expected if reality sports not one but a possibly infinite number of universes. Some universe was bound to get lucky, and it was ours.

It’s the single dreamiest, most unsupported idea in all of science, making Darwinian evolution look like a really solid bet by comparison. What’s wanted is real evidence for the multiverse, any at all, and that seems doomed to go on lacking ad infinitum.

Trumped up evidence is nevertheless a regular feature of popular science journalism. The latest: a headline in The Guardian, “Multiverse: have astronomers found evidence of parallel universes?” Adding the question mark is prudent, since the answer, to be truthful, is No.

Author Stuart Clark got hold of a press release from the Royal Astronomical Society, which he wheels out after an introduction heavy with jokey references to Brexit, Trump, the alt-right, and cat videos.
It sounds bonkers but the latest piece of evidence that could favour a multiverse comes from the UK’s Royal Astronomical Society. They recently published a study on the so-called ‘cold spot’. This is a particularly cool patch of space seen in the radiation produced by the formation of the Universe more than 13 billion years ago. 
The cold spot was first glimpsed by NASA’s WMAP satellite in 2004, and then confirmed by ESA’s Planck mission in 2013. It is supremely puzzling. Most astronomers and cosmologists believe that it is highly unlikely to have been produced by the birth of the universe as it is mathematically difficult for the leading theory — which is called inflation — to explain. 
This latest study claims to rule out a last-ditch prosaic explanation: that the cold spot is an optical illusion produced by a lack of intervening galaxies.
One of the study’s authors, Professor Tom Shanks of Durham University, told the RAS, “We can’t entirely rule out that the Spot is caused by an unlikely fluctuation explained by the standard [theory of the Big Bang]. But if that isn’t the answer, then there are more exotic explanations. Perhaps the most exciting of these is that the Cold Spot was caused by a collision between our universe and another bubble universe. If further, more detailed, analysis … proves this to be the case then the Cold Spot might be taken as the first evidence for the multiverse.” [Emphasis added.]
Count the instances of speculative language in those last four sentences. “Can’t entirely rule out…If that isn’t the answers…Perhaps…If further, more detailed, analysis…proves…[M]ight be taken as the first evidence…”

It’s “Heady stuff,” Clark exclaims. That’s one way of putting it. The paper in question, though, says just this (“Evidence against a supervoid causing the CMB Cold Spot”):
If not explained by a ΛCDM ISW effect the Cold Spot could have more exotic primordial origins. If it is a non-Gaussian feature, then explanations would then include either the presence in the early universe of topological defects such as textures (Cruz et al. 2007) or inhomogeneous re-heating associated with non-standard inflation (Bueno Sa ́nchez 2014). Another explanation could be that the Cold Spot is the remnant of a collision between our Universe and another ‘bubble’ universe during an early inflationary phase (Chang et al. 2009, Larjo & Levi 2010). It must be borne in mind that even without a supervoid the Cold Spot may still be caused by an unlikely statistical fluctuation in the standard (Gaussian) ΛCDM cosmology.
In this way, based ultimately on a couple of parenthetically referenced papers from 2009 and 2010, a “cold spot” in space answers one of the ultimate questions that have ever puzzled human beings, tipping the scales toward a universe, or multiverse, without design or purpose. As of the present moment, in the quest to explain away ultra-fine tuning, this is the best kind of stuff that materialism has got to offer.

It’s all the most absurd axe-grinding: building your case against a person or idea you don’t like (intelligent design, in this case) by gathering rumors, dreams, and guesses, disregarding common sense and objective evidence, since the conclusion you wish to reach, that you are bound to reach, is already pre-set.

So materialism goes on its merry way, largely unchallenged, with the media as its bullhorn. If scientists advocating the theory of intelligent design ever went before the public with conjectures as weak as this, they would be flayed alive.


Does string theory excite you? Mathematically, it holds up. Aspects about it suggest not one but several different dimensions, ones we’re not generally privy to, though we may be interacting with some of them all the time, completely unaware. Were it true, what would these dimensions look like and how might they affect us? And what is a dimension anyway?

Two dimensions is just a point. We may remember the coordinate plane from math class with the x and y-axes. Then there’s the third dimension, depth (the z-axis). Another way to look at it is latitude, longitude, and altitude, which can locate any object on Earth. These are followed by the fourth dimension, space-time. Everything has to occur somewhere and at a certain time. After that, things get weird.

Superstring theory, one of the leading theories today to explain the nature of our universe, contends that there are 10 dimensions. That’s nine of space and one of time. Throughout the 20th century, physicists erected a standard model of physics. It explains pretty well how subatomic particles behave, along with the forces of the universe, such as electromagnetism, the stronger and weaker nuclear forces, and gravity. But that last one standard physics can’t account for.

Even so, this model has allowed us the startling ability to peer back to the moments just after the Big Bang took place. Before that, scientists believe that everything was condensed into a single point of infinite density and temperature, known as the singularity, which exploded, forming everything in the observable universe today. But the problem is, we can’t peer back beyond that point. That’s where string theory comes in. The innovations it provides can account for gravity and help explain what existed before the Big Bang.

So what are these other dimensions and how might we experience them? That’s a tricky question, but physicists have some idea of what it might be like. Really, other dimensions are related to other possibilities. How we interact with these is difficult to explain. At the fifth dimension other possibilities for our world open up.

In the higher dimensions, you’d witness every possible world future, past, and present, simultaneously.

You’d be able to move forward or backward in time, just as you can in space, say while walking down a corridor. You’d also be able to see the similarities and differences between the world we inhabit and other possible ones. In the sixth dimension, you’d move along not a line but a plane of possibilities and be able to compare and contrast them. In the fifth and sixth dimensions, no matter where in space you inhabit, you’d witness every possible permutation of what can occur past, present, and future.

In the seventh, eighth, and ninth dimensions, the possibility of other universes open up, ones where the very physical forces of nature change, places where gravity operates differently and the speed of light is different. Just as in the fifth and sixth dimensions, where all possible permutations in the universe are evident before you, in the seventh dimension every possibility for these other universes, operating under these new laws, becomes clear.

In the eighth dimension, we reach the plane of all possible histories and futures for each universe, branching out into infinity. In the ninth dimension, all universal laws of physics and the conditions in each universe become apparent. Finally, in the tenth dimension, we reach the point where everything becomes possible and imaginable.

For string theory to work, six dimensions are required for it to operate in a manner that’s consistent with nature. Since these other dimensions are on such a small scale, we’ll need another way to find evidence of their existence. One way would be to peer into the past using powerful telescopes which can hunt for light from billions of years ago, when the universe was first born.

String theory has an answer for what came before the Big Bang. The universe was made up of nine perfectly symmetrical dimensions, the tenth being time. Meanwhile, the four fundamental forces were united at extremely high temperatures. The structure was under high pressure. It soon became unstable and broke in two. This became two different forms of time and led to the three dimensional universe we recognize today. Meanwhile, those other six dimensions shrunk way down to the subatomic level.

Imagine seeing every possibility and permutation in all universes, all at once.

As for gravity, string theory contends that the basic units of the universe are strings— infinitesimally small, vibrating filaments of energy. They’re so tiny, they’d be measured on the Planck scale—the smallest scale known to physics. Each string vibrates at a specific frequency and represents a certain force. Gravity and all the other forces are therefore a result of the vibrations of specific strings.

One problem is that this theory is hard to test, outside of advanced mathematical equations. Some experiments have been done using supercomputers, which can run simulations and make predictions. That isn’t exactly enough to prove that it’s true, but it’s helpful and lends support. Besides astronomical observations, physicists are hopeful that experiments with the Large Hadron Collider at CERN, on the Franco-Swiss border, may offer evidence of extra dimensions, lending string theory greater credence.


They have made use of the Sloan Foundation Telescope for two years and surveyed the universe under the project Sloan Digital Sky Survey’s Extended Baryon Oscillation Spectroscopic Survey (eBOSS), enabling them measure three-dimensional positions of more than 147,000 quasars.

Quasars are the bright and distant points of light, visible all the way across the universe. When matter and energy fall into a quasar’s black hole, they heat up to incredible temperatures and glow, which could be detected by the 2.5 metre Sloan Foundation Telescope on Earth.

Ashley Ross of the Ohio State University said, “That makes them the ideal objects to use to make the biggest map yet.”

After successfully creating a three-dimensional map of where the quasars are, scientists used another method that involved studying “baryon acoustic oscillations”, which configured sound waves that travelled through the early universe, when it was much hotter and denser than the present-day universe.

The explanation for this sound waves detection is that when the universe was 380,000 years old, certain conditions changed suddenly and the sound waves became “frozen” and left imprinted in the three-dimensional structure of the universe we see today.

The results of the new study follow the predictions of Einstein’s General Theory of Relativity, besides including other components whose effects can be measured.

NASA's Hubble Space Telescope has captured the glow of new stars in these small, ancient galaxies, called Pisces A and Pisces B. The dwarf galaxies have lived in isolation for billions of years and are just now beginning to make stars. CREDIT: NASA, ESA, and E. Tollerud (STScI)