Featured Post

Amazon Banned My Book: This is My Response to Amazon

Logic is an enemy  and Truth is a menace. I am nothing more than a reminder to you that  you cannot destroy Truth by burnin...

26 November 2017

Space dust may transport life between worlds: cosmic speciation



Life on our planet might have originated from biological particles brought to Earth in streams of space dust, a study suggests.

Fast-moving flows of interplanetary dust that continually bombard our planet’s atmosphere could deliver tiny organisms from far-off worlds, or send Earth-based organisms to other planets, according to the research.

The dust streams could collide with biological particles in Earth’s atmosphere with enough energy to knock them into space, a scientist has suggested.
Such an event could enable bacteria and other forms of life to make their way from one planet in the solar system to another and perhaps beyond.

The finding suggests that large asteroid impacts may not be the sole mechanism by which life could transfer between planets, as was previously thought.


The research from the University of Edinburgh calculated how powerful flows of space dust – which can move at up to 70 km a second – could collide with particles in our atmospheric system.

It found that small particles existing at 150 km or higher above Earth’s surface could be knocked beyond the limit of Earth’s gravity by space dust and eventually reach other planets.

The same mechanism could enable the exchange of atmospheric particles between distant planets.


 Some bacteria, plants and small animals called tardigrades are known to be able to survive in space, so it is possible that such organisms – if present in Earth’s upper atmosphere – might collide with fast-moving space dust and withstand a journey to another planet.

The study, published in Astrobiology, was partly funded by the Science and Technology Facilities Council.

“The proposition that space dust collisions could propel organisms over enormous distances between planets raises some exciting prospects of how life and the atmospheres of planets originated. The streaming of fast space dust is found throughout planetary systems and could be a common factor in proliferating life,” says Professor Arjun Berera.


*************************


A new species can evolve in as few as two generations, researchers have found, shattering the orthodox position that speciation is a process that occurs slowly over a long time.

Ironically, the case study that led to this startling conclusion – detailed in a paper in the journal Science – concerns the finches of the Galapagos islands, the very collection of birds that helped Charles Darwin formulate his theory regarding the role of natural selection in evolution.

A team of researchers led by Leif Andersson from Uppsala University, in Sweden, report the emergence of a new species of finch, dubbed Big Bird, arising from an initial cross breeding between two species, the large cactus finch (Geospiza conirostris) and the medium ground finch (Geospiz fortis). From a first chance encounter, a new lineage which boasts a unique beak shape, unique vocalisations, and the inability to breed with other finch species emerged.

The Big Bird today comprises only about 30 individuals – all fiercely inbred, but meeting the definition of distinct species, nonetheless.

The case study is watertight because the set-up for the foundation mating between the two originator species was observed by a pair of scientists from Princeton University, who were visiting the Galapagos island of Daphne Major at the time.

The year was 1981 and evolutionary biologists Rosemary and Peter Grant had been studying the finches of the island group. When they noticed a strange bird with a largish beak and unusual song on Daphne Major, therefore, they knew immediately it was not one of the three finch species native to the place.


"We didn’t see him fly in from over the sea, but we noticed him shortly after he arrived,” recalls Peter Grant. “He was so different from the other birds that we knew he did not hatch from an egg on Daphne Major.”

It turned out the intruder was from a species resident on Espanola Island, more than 100 kilometres away. Unable to return and thus find a mate from its own species, the finch somehow managed to mate successfully with a local girl.

Isolation is a critical step in speciation. The successful interbreeding would never have happened had not the male finch been somehow massively blown off course and – remarkably – found landfall on another tiny speck in the Pacific. Thus, if not for outrageous fortune, the cactus finch and the ground finch would not have challenged another fundamental definition of “species” – the inability to produce fertile offspring with a member of a different species.

For the resultant offspring, however, the results were potentially dire. The baby finches were neither one nor the other, and developed with beaks and calls that were unmatched among the resident species. Like isolated populations of humans have occasionally been known to do, therefore, and perhaps equally unwisely, they turned for attention to their own siblings.

The Grants, having taken an initial blood sample from the outsider, continued to monitor the little population of Big Birds, taking blood from the subsequent six generations.

Now, Andersson and his colleagues from Uppsala have analysed the DNA collected from each of those generations. They conclude that the Big Birds quickly developed unique structural characteristics with which they were able to forge an entirely new environmental niche that did not put them in competition with the more numerous resident finch species.

“It is very striking that when we compare the size and shape of the Big Bird beaks with the beak morphologies of the other three species inhabiting Daphne Major, the Big Birds occupy their own niche in the beak morphology space,” says co-author Sangeet Lamichhaney.

“Thus, the combination of gene variants contributed from the two interbreeding species in combination with natural selection led to the evolution of a beak morphology that was competitive and unique.”


He adds that a naturalist visiting Great Daphne today and unaware of the Big Birds’ history would have no reason to think the species was anything but ancient and firmly rooted on the island.

With only small numbers and a shallow genepool, of course, there is no guarantee of the new species’ robust and continued survival. Andersson notes that this type of emergence may have happened many times before, the results lost after a few generations to extinction.

“We have no indication about the long-term survival of the Big Bird lineage, but it has the potential to become a success, and it provides a beautiful example of one way in which speciation occurs,” he says.

19 November 2017

ESO's Journey to the Most Remote Galaxy in the Observable Universe


An international team of astronomers using the European Southern Observatory (ESO) Very Large Telescope high in the mountains of Chile measured the distance to the most remote galaxy so far. This is the first time that astronomers have been able to confirm that they are observing a galaxy as it was in the era of reionization — when the first generation of brilliant stars was making the young Universe transparent and ending the cosmic Dark Ages.

A team of astronomers used ESO's Very Large Telescope, the VLT, to confirm that a galaxy that had previously been spotted in images from the NASA/ESA Hubble Space Telescope is in fact the most distant object that is ever been identified in the Universe.


Studying these first galaxies is extremely difficult; they are very faint and small and by the time their dim light gets to Earth it falls mostly in the infrared part of the spectrum because it has been stretched by the expansion of the Universe.


To make matters worse, at this very early time, less than a billion years after the Big Seed, the Universe was not completely transparent. It was filled with hydrogen which acted kind of like a fog and absorbed the ultraviolet radiation from the young galaxies. This is the first time that ESO astronomers managed to obtain spectroscopic observations of a galaxy from the era of reionization, in other words from the time when the Universe was still clearing out the hydrogen fog.

Despite the difficulties of finding these early galaxies, the new Wide Field Camera 3 on the NASA/ESA Hubble Space Telescope discovered several very good candidate objects earlier in 2010.

They were thought to be galaxies shining in the early Universe at redshifts greater than eight, but confirming the distances to such faint and remote objects is an enormous challenge and can only reliably be done using spectroscopy from very large ground-based telescopes.

The team was excited to find that if you combine the huge light collecting power of the VLT, with the sensitivity of its infrared spectroscopic instrument, SINFONI, and if you then use a very long exposure time you just might be able to detect the faint glow from one of these very remote objects and then go on to measure its distance.

A 16 hour exposure with the VLT and SINFONI of the galaxy UDFy-38135539 did indeed show the very faint glow from hydrogen at a redshift of 8.6, which means that this light left the galaxy when the Universe was only about 600 million years old. This is the most distant galaxy ever reliably confirmed.

One of the puzzling things about this discovery is that the ultraviolet radiation emitted by the galaxy does not actually seems to be strong enough to be able to clear out the hydrogen fog around the galaxy.

So one possible explanation is that there must be other galaxies, probably fainter and less massive neighbors, that helped ionize the hydrogen in the region of space around the galaxy, thus making it transparent.

Without this additional help the brilliant light from the main galaxy would have been trapped in the surrounding hydrogen fog and it could not have even started its 13 billion-year journey towards Earth.

17 November 2017

Zimbabweimerica: Leipzig University considers firing law professor over call for ‘White Europe’

“cosmopolitan” and “international” = no-go zones for Whites

“xenophobic” = opposing White genocide

“intolerant” = advocating self-preservation

"opinions” = beliefs you may not assert
_______________________________________

Welcome to Zimbabweimerica, Whitey.


“We will now begin investigations and examine the employment law measures against Professor Rauscher,” announced Dr. Zaius.

_______________________________________

THERE IS ONLY ONE SOLUTION
_______________________________________




16 November 2017

Scientists Have Discovered a New Planet Close to Earth. Here’s Why It's So Exciting


If life is lurking somewhere in space, it’s done an awfully good job of hiding itself so far. But the jig may be up now that we have a better idea of where to look. That’s clearer than ever with the announcement in the journal Astronomy and Astrophysics of a newly discovered exoplanet orbiting an otherwise unremarkable star named Ross 128. Not only is the planet precisely the kind of place that could support biology, it’s located right down the street by cosmic standards — just 11 light-years from Earth.

The new world, prosaically named Ross 128 b, was discovered by a European telescope in the Chilean desert that looks for planets by what’s known as the radial velocity method. Even worlds orbiting the nearest stars are impossible to see by conventional telescopes. That’s partly because the planets are so tiny, in relative terms, and partly because the glare from the star washes out the view of anything nearby, much the way the glare from a streetlight makes it impossible to see a moth fluttering next to it.


Instead, astronomers look for the tiny wobble in the star that’s caused by the gravitational tugging of an orbiting body. If you know how to read the wobble you can learn a lot about the planet that’s causing it, and in this case that analysis is yielding some happy surprises.

According to the five-nation team of researchers who made the new discovery, Ross 128 b is no bigger than 1.35 times the size of Earth — very much the kind of planet that would have a solid surface where life could emerge. It orbits its parent star once every 9.9 days — an exceedingly fleeting year caused by the fact that the planet is 20 times closer to its star than Earth is to the sun. That ought to make the planet blisteringly hot, except that Ross 128 is a red dwarf, a far smaller, far cooler star than our yellow, so-called Class G star.


Even orbiting so close, Ross 128 b could thus have a surface temperature that averages about 269 degrees K, which sounds nasty until you realize that that comes out to about 73 degrees F (23 degrees C). What’s more, the planet rotates relatively slowly, meaning that if it has an atmosphere — by no means a sure thing — it would not have flung it off the way a rapidly spinning planet would over time.

But it’s something else in the nature of the star, not the planet, that makes the new announcement especially promising. We know of only one planet in the universe — our own — that harbors life, and so it has always made scientific sense to concentrate our search for extraterrestrial biology on planets circling sunlike stars. Those stars, however, are relatively rare, while red dwarfs make up perhaps 75% of all of the stars in the galaxy. Simple probability, then, says that they might be a far better place to go looking for living planets, provided those planets cuddle up close to the star’s hearth the way Ross 128 b does.

This is not the first time astronomers have discovered precisely this kind of Earth-like planet orbiting comfortably close to a red dwarf. Just last summer, a team of researchers who also used the wobble method discovered a planet orbiting an even closer red dwarf; indeed that dwarf, Proxima Centauri, is closer to Earth than any star in the cosmos, just 4.2 light-years away.


But the planet, Proxima Centauri b, faces some challenges Ross 128 b doesn’t. Red dwarfs can be volatile, sending out periodic flares that could blowtorch any atmosphere on a nearby planet off into space and destroy any life that might survive with their lethal levels of X-ray and ultraviolet radiation. In 2016, a team from the Smithsonian Astrophysical Observatory detected 66 separate flare events on Proxima Centauri. That would not necessarily be fatal to life on the nearby planet, but it wouldn’t do it any favors either. Ross 128, by contrast, appears to be a quieter star, with less frequent flaring — which is characteristic of more mature red dwarfs, further along in their life cycles.