Pages

30 September 2023

Cosmic Web Lights Up In The Darkness Of Space

Keck Cosmic Web Imager Offers Best Glimpse Yet of the Filamentous Network That Connects Galaxies

Maunakea, Hawaiʻi – Like rivers feeding oceans, streams of gas nourish galaxies throughout the cosmos. But these streams, which make up a part of the cosmic web, are very faint and hard to see. While astronomers have known about the cosmic web for decades, and even glimpsed the glow of its filaments around bright cosmic objects called quasars, they have not directly imaged the extended structure in the darkest portions of space—until now.

New results from the Keck Cosmic Web Imager, or KCWI, which was designed by Caltech’s Edward C. Stone Professor of Physics Christopher Martin and his team, are the first to show direct light emitted by the largest and most hidden portion of the cosmic web: the crisscrossing wispy filaments that stretch across the darkest corners of space between galaxies. The KCWI instrument is based at the W. M. Keck Observatory atop Maunakea in Hawaiʻi.

“We chose the name Keck Cosmic Web Imager for our instrument because we were hoping it would directly detect the cosmic web,” says Martin, who is also the director of the Caltech Optical Observatories, which includes Caltech’s portion of Keck Observatory; other Keck Observatory partners are the University of California and NASA. “I’m very happy it worked out.”

Galaxies in our universe condense out of swirling clouds of gas. That gas then further condenses into stars that light up the galaxies, making them visible to telescopes in a range of wavelengths of light. Astronomers think that cold, dark filaments in deep space snake their way to the galaxies, supplying them with gas, which is fuel for making more stars. In 2015, Martin and his colleagues found “smoking-gun evidence,” as Martin describes it, for this so-called cold-flow model of galaxy formation: a long filament funneling gas into a large galaxy. For this work, they used a prototype instrument to KCWI, the Cosmic Web Imager, which was based at Caltech’s Palomar Observatory.

In that case, the filament was being lit up by a nearby quasar, the bright nucleus of a young galaxy. But most of the cosmic web lies in the desolate territory between galaxies and is hard to image.

“Before this latest finding, we saw the filamentary structures under the equivalent of a lamppost,” says Martin. “Now we can see them without a lamp.”

The new findings appear in a paper published in Nature Astronomy on September 28.

Martin has been driven to reveal the cosmic web in its full glory ever since he was a graduate student. This detailed imaging of the web, he says, will provide astronomers with missing information they need to understand the details of how galaxies form and evolve. It can also help astronomers map the distribution of dark matter in our universe (dark matter makes up about 85 percent of all matter in the universe, but scientists still don’t know what it is made of).

“The cosmic web delineates the architecture of our universe,” he says. “It’s where most of the normal, or baryonic, matter in our galaxy resides and directly traces the location of dark matter.”

The Glow of Filaments

The best way to see the cosmic web directly is to pick up signatures of its main component, hydrogen gas, using instruments called spectrometers, which spread light out into a multitude of wavelengths, also known as a spectrum. Hydrogen gas can be identified within these spectra via its strongest emission line, called the Lyman alpha line. Martin and his colleagues designed KCWI to find these faint Lyman alpha signatures across a two-dimensional (2D) image of the cosmos (hence KCWI is known as an imaging spectrometer). The instrument’s first installment covers the “blue” portion of the visible-light spectrum, spanning wavelength ranges from 350 to 560 nanometers. (The second part of the instrument, called the Keck Cosmic Reionization Mapper, or KCRM, which sees the red, or longer-wavelength portion, of the visible spectrum, was recently installed at Keck Observatory).

KCWI’s precise spectrometers can look for the Lyman alpha signatures of the cosmic web across a range of wavelengths. Because of the expansion of the universe, which stretches light to longer wavelengths, gas that is located farther away from Earth has a redder Lyman alpha signature. The 2D images captured by KCWI at each wavelength of light can be stacked together to make a three-dimensional (3D) map of the emission from the cosmic web. For this observation, KCWI observed a region of space between 10 and 12 billion light-years away.

“We are basically creating a 3D map of the cosmic web,” Martin explains. “We take spectra for every point in an image at range of wavelengths, and the wavelengths translate to distance.”

Confusion with the Diffuse Light of Space

One challenge in detecting the cosmic web is that its dim light can be confused with nearby background light that suffuses the skies above Maunakea, including the glow from the atmosphere, zodiacal light from the solar system (generated when sunlight scatters off interplanetary dust), and even our own galaxy’s light.

To solve this problem, Martin came up with a new strategy to subtract this background light from the images of interest.

“We look at two different patches of sky, A and B. The filament structures will be at distinct distances in the two directions in the patches, so you can take the background light from image B and subtract it from A, and vice versa, leaving just the structures. I ran detailed simulations of this in 2019 to convince myself that this method would work,” he says.

The result is that astronomers now have “a whole new way to study the universe,” as Martin says.

“With KCRM, the newly deployed red channel of KCWI, we can see even farther into the past,” says senior instrument scientist Mateusz Matuszewski. “We are very excited about what this new tool will help us learn about the more distant filaments and the era when the first stars and black holes formed.”

29 September 2023

Multicultural paradise almost achieved: Swedish PM vows to defeat gangs, seeks military help


Swedish PM calls in military to assist with gang violence

Sept. 29 (UPI) -- Swedish Prime Minister Ulf Kristersson called together the armed forces and police to tackle rising gang violence on Monday, blaming it on "failed integration."

Authorities pointed to 11 deaths over the past month connected to gang violence as a reason to take such measures. On Thursday, two men were shot in separate crimes near Stockholm while a 25-year-old woman was killed near Uppsala.

"We're going to hunt down the gangs and we're going to defeat them," Kristersson said during a nationally televised address Thursday evening. "It is a difficult time for Sweden."

"I cannot stress enough how serious the situation is," he said. "Sweden has never seen anything like this before. No other country in Europe sees anything like it."

He blamed the increase on "irresponsible immigration policy" and "failed integration," along with "political naivety," for the rise of gang violence, but said Sweden will now take a different approach to tackle the issue.

Sweden's armed forces chief Micael Byden said he is ready to help local police, but it is not clear how they would participate.

Kristersson's opponents have said that bringing in the military ignores tackling the root cause of the violence. Reports said the uptick in violence stems from the gang network Foxtrot breaking into two rival gangs after infighting.

Police said the violence also has its roots into the poor integration of immigrants, a widening gap between rich and poor, and drug use.

28 September 2023

Webb Discovers Methane, Carbon Dioxide in Atmosphere of K2-18 b

 

Webb Discovers Methane, Carbon Dioxide in Atmosphere of K2-18 b

A new investigation with NASA’s James Webb Space Telescope into K2-18 b, an exoplanet 8.6 times as massive as Earth, has revealed the presence of carbon-bearing molecules including methane and carbon dioxide. Webb’s discovery adds to recent studies suggesting that K2-18 b could be a Hycean exoplanet, one which has the potential to possess a hydrogen-rich atmosphere and a water ocean-covered surface.

The first insight into the atmospheric properties of this habitable-zone exoplanet came from observations with NASA’s Hubble Space Telescope, which prompted further studies that have since changed our understanding of the system.

K2-18 b orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light-years from Earth in the constellation Leo. Exoplanets such as K2-18 b, which have sizes between those of Earth and Neptune, are unlike anything in our solar system. This lack of equivalent nearby planets means that these ‘sub-Neptunes’ are poorly understood, and the nature of their atmospheres is a matter of active debate among astronomers.

The suggestion that the sub-Neptune K2-18 b could be a Hycean exoplanet is intriguing, as some astronomers believe that these worlds are promising environments to search for evidence for life on exoplanets.

"Our findings underscore the importance of considering diverse habitable environments in the search for life elsewhere," explained Nikku Madhusudhan, an astronomer at the University of Cambridge and lead author of the paper announcing these results. "Traditionally, the search for life on exoplanets has focused primarily on smaller rocky planets, but the larger Hycean worlds are significantly more conducive to atmospheric observations."

The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. These initial Webb observations also provided a possible detection of a molecule called dimethyl sulfide (DMS). On Earth, this is only produced by life. The bulk of the DMS in Earth’s atmosphere is emitted from phytoplankton in marine environments.

The inference of DMS is less robust and requires further validation. “Upcoming Webb observations should be able to confirm if DMS is indeed present in the atmosphere of K2-18 b at significant levels,” explained Madhusudhan.

While K2-18 b lies in the habitable zone and is now known to harbor carbon-bearing molecules, this does not necessarily mean that the planet can support life. The planet's large size — with a radius 2.6 times the radius of Earth — means that the planet’s interior likely contains a large mantle of high-pressure ice, like Neptune, but with a thinner hydrogen-rich atmosphere and an ocean surface. Hycean worlds are predicted to have oceans of water. However, it is also possible that the ocean is too hot to be habitable or be liquid.

Our ultimate goal is the identification of life on a habitable exoplanet, which would transform our understanding of our place in the universe.

"Although this kind of planet does not exist in our solar system, sub-Neptunes are the most common type of planet known so far in the galaxy," explained team member Subhajit Sarkar of Cardiff University. “We have obtained the most detailed spectrum of a habitable-zone sub-Neptune to date, and this allowed us to work out the molecules that exist in its atmosphere.”

Characterizing the atmospheres of exoplanets like K2-18 b — meaning identifying their gases and physical conditions — is a very active area in astronomy. However, these planets are outshone — literally — by the glare of their much larger parent stars, which makes exploring exoplanet atmospheres particularly challenging.

The team sidestepped this challenge by analyzing light from K2-18 b's parent star as it passed through the exoplanet's atmosphere. K2-18 b is a transiting exoplanet, meaning that we can detect a drop in brightness as it passes across the face of its host star. This is how the exoplanet was first discovered in 2015 with NASA’s K2 mission. This means that during transits a tiny fraction of starlight will pass through the exoplanet's atmosphere before reaching telescopes like Webb. The starlight's passage through the exoplanet atmosphere leaves traces that astronomers can piece together to determine the gases of the exoplanet's atmosphere.

"This result was only possible because of the extended wavelength range and unprecedented sensitivity of Webb, which enabled robust detection of spectral features with just two transits," said Madhusudhan. "For comparison, one transit observation with Webb provided comparable precision to eight observations with Hubble conducted over a few years and in a relatively narrow wavelength range."

"These results are the product of just two observations of K2-18 b, with many more on the way,” explained team member Savvas Constantinou of the University of Cambridge. “This means our work here is but an early demonstration of what Webb can observe in habitable-zone exoplanets.”

The team’s results were accepted for publication in The Astrophysical Journal Letters.

The team now intends to conduct follow-up research with the telescope's MIRI (Mid-Infrared Instrument) spectrograph that they hope will further validate their findings and provide new insights into the environmental conditions on K2-18 b.

"Our ultimate goal is the identification of life on a habitable exoplanet, which would transform our understanding of our place in the universe," concluded Madhusudhan. "Our findings are a promising step towards a deeper understanding of Hycean worlds in this quest."

NASA’s Webb Finds Carbon Source on Surface of Jupiter’s Moon Europa

 

Carbon suggests favorable environment for life in subsurface ocean 

For as long as humans have gazed into the night sky, we have wondered about life beyond the Earth. Scientists now know that several places in our solar system might have conditions suitable for life. One of these is Jupiter’s moon Europa, a fascinating world with a salty, subsurface ocean of liquid water — possibly twice as much as in all of Earth’s oceans combined. However, scientists had not confirmed if Europa’s ocean contained biologically essential chemicals, particularly carbon, the universal building block for life as we know it. Now, using the James Webb Space Telescope, astronomers have found carbon on Europa’s surface, which likely originated in this ocean. The discovery signals a potentially habitable environment in the ocean of Europa.

Jupiter’s moon Europa is one of a handful of worlds in our solar system that could potentially harbor conditions suitable for life. Previous research has shown that beneath its water-ice crust lies a salty ocean of liquid water with a rocky seafloor. However, planetary scientists had not confirmed if that ocean contained the chemicals needed for life, particularly carbon. 

Astronomers using data from NASA’s James Webb Space Telescope have identified carbon dioxide in a specific region on the icy surface of Europa. Analysis indicates that this carbon likely originated in the subsurface ocean and was not delivered by meteorites or other external sources. Moreover, it was deposited on a geologically recent timescale. This discovery has important implications for the potential habitability of Europa’s ocean.

“On Earth, life likes chemical diversity – the more diversity, the better. We’re carbon-based life. Understanding the chemistry of Europa’s ocean will help us determine whether it’s hostile to life as we know it, or if it might be a good place for life,” said Geronimo Villanueva of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of one of two independent papers describing the findings.

We now think that we have observational evidence that the carbon we see on Europa’s surface came from the ocean. That's not a trivial thing. Carbon is a biologically essential element,” added Samantha Trumbo of Cornell University in Ithaca, New York, lead author of the second paper analyzing these data.

NASA plans to launch its Europa Clipper spacecraft, which will perform dozens of close flybys of Europa to further investigate whether it could have conditions suitable for life, in October 2024.

A Surface-Ocean Connection

Webb finds that on Europa’s surface, carbon dioxide is most abundant in a region called Tara Regio – a geologically young area of generally resurfaced terrain known as “chaos terrain.” The surface ice has been disrupted, and there likely has been an exchange of material between the subsurface ocean and the icy surface.

“Previous observations from the Hubble Space Telescope show evidence for ocean-derived salt in Tara Regio,” explained Trumbo. “Now we’re seeing that carbon dioxide is heavily concentrated there as well. We think this implies that the carbon probably has its ultimate origin in the internal ocean.”

“Scientists are debating how much Europa’s ocean connects to its surface. I think that question has been a big driver of Europa exploration,” said Villanueva. “This suggests that we may be able to learn some basic things about the ocean’s composition even before we drill through the ice to get the full picture.”

Both teams identified the carbon dioxide using data from the integral field unit of Webb’s Near-Infrared Spectrograph (NIRSpec). This instrument mode provides spectra with a resolution of 200 x 200 miles (320 x 320 kilometers) on the surface of Europa, which has a diameter of 1,944 miles, allowing astronomers to determine where specific chemicals are located.

Carbon dioxide isn’t stable on Europa’s surface. Therefore, the scientists say it’s likely that it was supplied on a geologically recent timescale – a conclusion bolstered by its concentration in a region of young terrain.

“These observations only took a few minutes of the observatory’s time,” said Heidi Hammel of the Association of Universities for Research in Astronomy, a Webb interdisciplinary scientist leading Webb’s Cycle 1 Guaranteed Time Observations of the solar system. “Even with this short period of time, we were able to do really big science. This work gives a first hint of all the amazing solar system science we’ll be able to do with Webb.”

Searching for a Plume

Villanueva’s team also looked for evidence of a plume of water vapor erupting from Europa’s surface. Researchers using NASA’s Hubble Space Telescope reported tentative detections of plumes in 2013, 2016, and 2017. However, finding definitive proof has been difficult.

The new Webb data shows no evidence of plume activity, which allowed Villanueva’s team to set a strict upper limit on the rate of material potentially being ejected. The team stressed, however, that their non-detection does not rule out a plume. 

“There is always a possibility that these plumes are variable and that you can only see them at certain times. All we can say with 100% confidence is that we did not detect a plume at Europa when we made these observations with Webb,” said Hammel.