Pages

03 February 2009

The holonic Holy Hologram

The holonic Holy Hologram:

For many months, the GEO600 team-members had been scratching their heads over inexplicable noise that is plaguing their giant detector. Then, out of the blue, a researcher approached them with an explanation. In fact, he had even predicted the noise before he knew they were detecting it. According to Craig Hogan, a physicist at the Fermilab particle physics lab in Batavia, Illinois, GEO600 has stumbled upon the fundamental limit of space-time - the point where space-time stops behaving like the smooth continuum Einstein described and instead dissolves into "grains", just as a newspaper photograph dissolves into dots as you zoom in. "It looks like GEO600 is being buffeted by the microscopic quantum convulsions of space-time," says Hogan.

If this doesn't blow your socks off, then Hogan, who has just been appointed director of Fermilab's Center for Particle Astrophysics, has an even bigger shock in store: "If the GEO600 result is what I suspect it is, then we are all living in a giant cosmic hologram."

The idea that we live in a hologram probably sounds absurd, but it is a natural extension of our best understanding of black holes, and something with a pretty firm theoretical footing. It has also been surprisingly helpful for physicists wrestling with theories of how the universe works at its most fundamental level.

The "holographic principle" challenges our sensibilities. It seems hard to believe that you woke up, brushed your teeth and are reading this article because of something happening on the boundary of the universe. No one knows what it would mean for us if we really do live in a hologram, yet theorists have good reasons to believe that many aspects of the holographic principle are true.

Bekenstein's work provided an important clue in resolving the paradox. He discovered that a black hole's entropy - which is synonymous with its information content - is proportional to the surface area of its event horizon. This is the theoretical surface that cloaks the black hole and marks the point of no return for infalling matter or light. Theorists have since shown that microscopic quantum ripples at the event horizon can encode the information inside the black hole, so there is no mysterious information loss as the black hole evaporates.

Crucially, this provides a deep physical insight: the 3D information about a precursor star can be completely encoded in the 2D horizon of the subsequent black hole - not unlike the 3D image of an object being encoded in a 2D hologram. Susskind and Hooft extended the insight to the universe as a whole on the basis that the cosmos has a horizon too - the boundary from beyond which light has not had time to reach us in the 13.7-billion-year lifespan of the universe. What's more, work by several string theorists, most notably Juan Maldacena at the Institute for Advanced Study in Princeton, has confirmed that the idea is on the right track. He showed that the physics inside a hypothetical universe with five dimensions and shaped like a Pringle is the same as the physics taking place on the four-dimensional boundary.

According to Hogan, the holographic principle radically changes our picture of space-time. Theoretical physicists have long believed that quantum effects will cause space-time to convulse wildly on the tiniest scales. At this magnification, the fabric of space-time becomes grainy and is ultimately made of tiny units rather like pixels, but a hundred billion billion times smaller than a proton. This distance is known as the Planck length, a mere 10-35 metres. The Planck length is far beyond the reach of any conceivable experiment, so nobody dared dream that the graininess of space-time might be discernable.

That is, not until Hogan realised that the holographic principle changes everything. If space-time is a grainy hologram, then you can think of the universe as a sphere whose outer surface is papered in Planck length-sized squares, each containing one bit of information. The holographic principle says that the amount of information papering the outside must match the number of bits contained inside the volume of the universe.

Transudationism:

All life is a form of light, and the cosmos is a Holy Hologram.

No comments:

Post a Comment