Pages

22 May 2017

Getting to the Nitty Gritty of the Universe


The Universe is so immense and so vast that to be able to explain what it is in one or two sentences is physically impossible.
"The Big Bang was an autotelic cosmic seed, and the universe is an organism for cultivating Consciousness: All history is the history of the evolutionary transubstantiation of matter to Spirit via biological-life processes of Blood and Reason."
In a very general term, the Universe is essentially everything in existence. No one knows for sure how it will end or how big it is but ongoing research and various studies have certainly given us some clues.


The Cosmos is a word that is often used as a way to describe the Universe and the two are used interchangeably. However, it’s also used to refer to all things within the Universe, such as the Milky Way, and various galaxies. Regarding modern science, it is referring to spacetime, the different forms of energy, and the physical laws that bind and govern them.

Many people are under agreement that the Universe began to expand around 13.8 billion years ago following the Big Bang. But, there are other theories out there too that seek to explain how it all began, including the Steady State Theory or the Oscillating Universe Theory. However, the majority stick with the Big Bang Theory as it can explain the origin of all known matter accounts for the expansion of the Universe on top of explaining the existence of the Cosmic Microwave Background and other phenomena.

While scientists can quite easily map out a timeline of events that occurred from just after the Big Bang until now, those first few seconds immediately after are what causes all the arguments. What we do know is that those initial moments after the event can be divided into three time periods: the Singularity Epoch, the Inflation Epoch, and the Cooling Epoch. The earliest known period is the Singularity Epoch (also known as the Planck Era). During this time, all matter was condensed on a single point of infinite destiny and extreme heat. At this time temperatures were low and the fundamental forces began separating from one another.

The Inflation Epoch began with the creation of the first fundamental forces where temperatures were high, and pressure gave rise to rapid expansion and cooling. During this period the Universe began to grow exponentially, and baryogenesis occurred. As a result, the predominance of matter over antimatter in the Universe took place. Then, the Cooling Epoch began, and the Universe continued to decrease in both density and temperature. The energy of particles also decreased while quarks and gluons combined to form protons and neutrons among other baryons.


Over the next several billion years after the Cooling Epoch, the Universe began to take shape in a period known as the Structure Epoch. It was during this time that visible matter was distributed among structures of varying sizes including stars, planets, and galaxies. The Lambda-Cold Dark Matter model is the standard model of Big Bang cosmology, and in it, dark matter particles move much slower compared to the speed of light. Under this model cold dark matter accounts for around 23% of the Universe, while baryonic matter accounts for less than 5%. The remainder is said to be made up of dark energy. The next phase of evolution in the Universe came in the form of an acceleration known as the Cosmic Acceleration Epoch. Exactly when this period began is still under debate, but it was roughly around 5 billion years ago (around 8.8 billion years after the Big Bang).

With the Universe being as big as it is, and given that it’s been expanding for billions of years, it’s hard to put an actual size to it. Most current models suggest that it’s around 91 billion light years in diameter, but as no one can see the edge, who knows? We do know that matter is distributed in a highly structured fashion and within galaxies, this includes planets, stars, and nebulas. It’s just the same at much larger scales too. Regarding shape, spacetime exists in as either a positively curved, negatively curved, or flat configuration. This is based on there being at least four dimensions (x, y, and z coordinate, and time) and will depend on the nature of the expansion as well as if the Universe is infinite or finite.


Aftermath of the Big Seed. NASA.

Ok, so now let’s think about the fate of the Universe and how it may someday end. Modern theories tend to include the existence of dark energy and have led scientists to believe that eventually all of our Universe will go beyond our event horizon and become invisible, leading to catastrophic outcomes. The field of astronomy has been studied since the time of the Ancient Babylonians. Greek and Indian scholars then added to the field which included work from Thales and Anaximander who believed everything was made of a primordial form of matter. The idea that the Universe consisted of four elements (fire, earth, water, and air) was first proposed by a westerner back in the 5th century BCE by Empedocles. It was also around this time that the idea the Universe composed of atoms came about and that all matter was in fact made up of energy.

The geocentric model of the Universe was composed between the 2nd millennium BCE and the 2nd century CE. We also saw astronomy and astrology continue to evolve during this time. Classical astronomy was expanded during the Middle Ages, and the idea behind the rotation of the Earth was first proposed. Some scholars even expanded on models of a heliocentric Universe. By the 16th century, the most developed model of a heliocentric Universe was created with thanks to Nicolaus Copernicus. He was backed up later in the 16th/17th century by mathematician, astronomer and inventor, Galileo when he showcased his observations.

Sir Isaac Newton also played a big part in the unfolding some of the Universe’s many mysteries using his theory of Universal Gravitation. A little later, in 1755, Immanuel Kant proposed the Milky Way was a large group of stars that was held together by gravity. In 1785, William Herschel tried to map out the Milky Way but was unaware that vast areas of the galaxy are masked by dust and gas clouds, hiding its true shape.


It wasn’t then until the 20th century that the next real discovery came and that was with thanks to Einstein’s theories of Special and General Relativity. These groundbreaking theories were also joined by the Equivalence Principle, which states that gravitational mass is equal to that of inertial mass. In 1931, Einstein’s theory of Special Relativity was used by Indian-American astrophysicist Subrahmanyan Chandrasekhar to prove that neutron stars above a certain limit mass would collapse into black holes. Whereas just before this time, Edward Hubble announced the Universe was expanding. In the 1960’s dark matter was proposed as being the missing mass of the Universe and in the 1990’s dark energy was introduced as an attempt to solve certain cosmological issues including why the Universe is still accelerating.

Since the turn of the century, more discoveries have been made with thanks to the advancement of certain technologies including the Cosmic Background Explorer (COBE), the Hubble Space Telescope, and the Wilkinson Microwave Anisotropy Probe (WMAP). Those telescopes currently in the pipeline including the James Webb Space Telescope (JWSR) and Extremely Large Telescope (ELT) are also expected to produce promising results in the future. It’s hard to say whether we’ll ever know all there is to know about the Universe. I guess for now all we can do is keep striving to discover more and the mysteries will reveal themselves.

Illuminated illustration of the Ptolemaic geocentric conception of the Universe by Portuguese cosmographer and cartographer Bartolomeu Velho (?-1568) in his work Cosmographia (1568). Credit: Bibilotèque Nationale de France, Paris

-------------------------------

A Cold Spot In Space — “Evidence” of a Multiverse?

Cosmic fine tuning, with physics and chemistry conspiring to permit the existence of creatures such as ourselves, is one of best-recognized pieces of evidence for intelligent design. To this, the hypothesis of a multiverse is materialism’s only response.

According to this line of reasoning, or imagining, our universe reflects only a lucky roll of the dice. A very, very, very lucky roll, which, however, is just to be expected if reality sports not one but a possibly infinite number of universes. Some universe was bound to get lucky, and it was ours.

It’s the single dreamiest, most unsupported idea in all of science, making Darwinian evolution look like a really solid bet by comparison. What’s wanted is real evidence for the multiverse, any at all, and that seems doomed to go on lacking ad infinitum.

Trumped up evidence is nevertheless a regular feature of popular science journalism. The latest: a headline in The Guardian, “Multiverse: have astronomers found evidence of parallel universes?” Adding the question mark is prudent, since the answer, to be truthful, is No.

Author Stuart Clark got hold of a press release from the Royal Astronomical Society, which he wheels out after an introduction heavy with jokey references to Brexit, Trump, the alt-right, and cat videos.
It sounds bonkers but the latest piece of evidence that could favour a multiverse comes from the UK’s Royal Astronomical Society. They recently published a study on the so-called ‘cold spot’. This is a particularly cool patch of space seen in the radiation produced by the formation of the Universe more than 13 billion years ago. 
The cold spot was first glimpsed by NASA’s WMAP satellite in 2004, and then confirmed by ESA’s Planck mission in 2013. It is supremely puzzling. Most astronomers and cosmologists believe that it is highly unlikely to have been produced by the birth of the universe as it is mathematically difficult for the leading theory — which is called inflation — to explain. 
This latest study claims to rule out a last-ditch prosaic explanation: that the cold spot is an optical illusion produced by a lack of intervening galaxies.
One of the study’s authors, Professor Tom Shanks of Durham University, told the RAS, “We can’t entirely rule out that the Spot is caused by an unlikely fluctuation explained by the standard [theory of the Big Bang]. But if that isn’t the answer, then there are more exotic explanations. Perhaps the most exciting of these is that the Cold Spot was caused by a collision between our universe and another bubble universe. If further, more detailed, analysis … proves this to be the case then the Cold Spot might be taken as the first evidence for the multiverse.” [Emphasis added.]
Count the instances of speculative language in those last four sentences. “Can’t entirely rule out…If that isn’t the answers…Perhaps…If further, more detailed, analysis…proves…[M]ight be taken as the first evidence…”

It’s “Heady stuff,” Clark exclaims. That’s one way of putting it. The paper in question, though, says just this (“Evidence against a supervoid causing the CMB Cold Spot”):
If not explained by a ΛCDM ISW effect the Cold Spot could have more exotic primordial origins. If it is a non-Gaussian feature, then explanations would then include either the presence in the early universe of topological defects such as textures (Cruz et al. 2007) or inhomogeneous re-heating associated with non-standard inflation (Bueno Sa ́nchez 2014). Another explanation could be that the Cold Spot is the remnant of a collision between our Universe and another ‘bubble’ universe during an early inflationary phase (Chang et al. 2009, Larjo & Levi 2010). It must be borne in mind that even without a supervoid the Cold Spot may still be caused by an unlikely statistical fluctuation in the standard (Gaussian) ΛCDM cosmology.
In this way, based ultimately on a couple of parenthetically referenced papers from 2009 and 2010, a “cold spot” in space answers one of the ultimate questions that have ever puzzled human beings, tipping the scales toward a universe, or multiverse, without design or purpose. As of the present moment, in the quest to explain away ultra-fine tuning, this is the best kind of stuff that materialism has got to offer.

It’s all the most absurd axe-grinding: building your case against a person or idea you don’t like (intelligent design, in this case) by gathering rumors, dreams, and guesses, disregarding common sense and objective evidence, since the conclusion you wish to reach, that you are bound to reach, is already pre-set.

So materialism goes on its merry way, largely unchallenged, with the media as its bullhorn. If scientists advocating the theory of intelligent design ever went before the public with conjectures as weak as this, they would be flayed alive.

--------------------------------------


Does string theory excite you? Mathematically, it holds up. Aspects about it suggest not one but several different dimensions, ones we’re not generally privy to, though we may be interacting with some of them all the time, completely unaware. Were it true, what would these dimensions look like and how might they affect us? And what is a dimension anyway?

Two dimensions is just a point. We may remember the coordinate plane from math class with the x and y-axes. Then there’s the third dimension, depth (the z-axis). Another way to look at it is latitude, longitude, and altitude, which can locate any object on Earth. These are followed by the fourth dimension, space-time. Everything has to occur somewhere and at a certain time. After that, things get weird.

Superstring theory, one of the leading theories today to explain the nature of our universe, contends that there are 10 dimensions. That’s nine of space and one of time. Throughout the 20th century, physicists erected a standard model of physics. It explains pretty well how subatomic particles behave, along with the forces of the universe, such as electromagnetism, the stronger and weaker nuclear forces, and gravity. But that last one standard physics can’t account for.

Even so, this model has allowed us the startling ability to peer back to the moments just after the Big Bang took place. Before that, scientists believe that everything was condensed into a single point of infinite density and temperature, known as the singularity, which exploded, forming everything in the observable universe today. But the problem is, we can’t peer back beyond that point. That’s where string theory comes in. The innovations it provides can account for gravity and help explain what existed before the Big Bang.

So what are these other dimensions and how might we experience them? That’s a tricky question, but physicists have some idea of what it might be like. Really, other dimensions are related to other possibilities. How we interact with these is difficult to explain. At the fifth dimension other possibilities for our world open up.

In the higher dimensions, you’d witness every possible world future, past, and present, simultaneously.

You’d be able to move forward or backward in time, just as you can in space, say while walking down a corridor. You’d also be able to see the similarities and differences between the world we inhabit and other possible ones. In the sixth dimension, you’d move along not a line but a plane of possibilities and be able to compare and contrast them. In the fifth and sixth dimensions, no matter where in space you inhabit, you’d witness every possible permutation of what can occur past, present, and future.

In the seventh, eighth, and ninth dimensions, the possibility of other universes open up, ones where the very physical forces of nature change, places where gravity operates differently and the speed of light is different. Just as in the fifth and sixth dimensions, where all possible permutations in the universe are evident before you, in the seventh dimension every possibility for these other universes, operating under these new laws, becomes clear.

In the eighth dimension, we reach the plane of all possible histories and futures for each universe, branching out into infinity. In the ninth dimension, all universal laws of physics and the conditions in each universe become apparent. Finally, in the tenth dimension, we reach the point where everything becomes possible and imaginable.

For string theory to work, six dimensions are required for it to operate in a manner that’s consistent with nature. Since these other dimensions are on such a small scale, we’ll need another way to find evidence of their existence. One way would be to peer into the past using powerful telescopes which can hunt for light from billions of years ago, when the universe was first born.

String theory has an answer for what came before the Big Bang. The universe was made up of nine perfectly symmetrical dimensions, the tenth being time. Meanwhile, the four fundamental forces were united at extremely high temperatures. The structure was under high pressure. It soon became unstable and broke in two. This became two different forms of time and led to the three dimensional universe we recognize today. Meanwhile, those other six dimensions shrunk way down to the subatomic level.

Imagine seeing every possibility and permutation in all universes, all at once.

As for gravity, string theory contends that the basic units of the universe are strings— infinitesimally small, vibrating filaments of energy. They’re so tiny, they’d be measured on the Planck scale—the smallest scale known to physics. Each string vibrates at a specific frequency and represents a certain force. Gravity and all the other forces are therefore a result of the vibrations of specific strings.

One problem is that this theory is hard to test, outside of advanced mathematical equations. Some experiments have been done using supercomputers, which can run simulations and make predictions. That isn’t exactly enough to prove that it’s true, but it’s helpful and lends support. Besides astronomical observations, physicists are hopeful that experiments with the Large Hadron Collider at CERN, on the Franco-Swiss border, may offer evidence of extra dimensions, lending string theory greater credence.

----------------------------------------



They have made use of the Sloan Foundation Telescope for two years and surveyed the universe under the project Sloan Digital Sky Survey’s Extended Baryon Oscillation Spectroscopic Survey (eBOSS), enabling them measure three-dimensional positions of more than 147,000 quasars.

Quasars are the bright and distant points of light, visible all the way across the universe. When matter and energy fall into a quasar’s black hole, they heat up to incredible temperatures and glow, which could be detected by the 2.5 metre Sloan Foundation Telescope on Earth.

Ashley Ross of the Ohio State University said, “That makes them the ideal objects to use to make the biggest map yet.”

After successfully creating a three-dimensional map of where the quasars are, scientists used another method that involved studying “baryon acoustic oscillations”, which configured sound waves that travelled through the early universe, when it was much hotter and denser than the present-day universe.

The explanation for this sound waves detection is that when the universe was 380,000 years old, certain conditions changed suddenly and the sound waves became “frozen” and left imprinted in the three-dimensional structure of the universe we see today.

The results of the new study follow the predictions of Einstein’s General Theory of Relativity, besides including other components whose effects can be measured.

NASA's Hubble Space Telescope has captured the glow of new stars in these small, ancient galaxies, called Pisces A and Pisces B. The dwarf galaxies have lived in isolation for billions of years and are just now beginning to make stars. CREDIT: NASA, ESA, and E. Tollerud (STScI)