Pages

04 April 2021

From Stardust to Pale Blue Dot: Carbon’s Intriguing Interstellar Journey to Earth

We are made of stardust, the saying goes, and a pair of studies including University of Michigan research finds that may be more true than we previously thought.

The first study, led by U-M researcher Jie (Jackie) Li and published in Science Advances, finds that most of the carbon on Earth was likely delivered from the interstellar medium, the material that exists in space between stars in a galaxy. This likely happened well after the protoplanetary disk, the cloud of dust and gas that circled our young sun and contained the building blocks of the planets, formed and warmed up.

Carbon was also likely sequestered into solids within one million years of the sun’s birth — which means that carbon, the backbone of life on earth, survived an interstellar journey to our planet.

Previously, researchers thought carbon in the Earth came from molecules that were initially present in nebular gas, which then accreted into a rocky planet when the gases were cool enough for the molecules to precipitate. Li and her team, which includes U-M astronomer Edwin Bergin, Geoffrey Blake of the California Institute of Technology, Fred Ciesla of the University of Chicago and Marc Hirschmann of the University of Minnesota, point out in this study that the gas molecules that carry carbon wouldn’t be available to build the Earth because once carbon vaporizes, it does not condense back into a solid.

“The condensation model has been widely used for decades. It assumes that during the formation of the sun, all of the planet’s elements got vaporized, and as the disk cooled, some of these gases condensed and supplied chemical ingredients to solid bodies. But that doesn’t work for carbon,” said Li, a professor in the U-M Department of Earth and Environmental Sciences.

Much of carbon was delivered to the disk in the form of organic molecules. However, when carbon is vaporized, it produces much more volatile species that require very low temperatures to form solids. More importantly, carbon does not condense back again into an organic form. Because of this, Li and her team inferred most of Earth’s carbon was likely inherited directly from the interstellar medium, avoiding vaporization entirely.

To better understand how Earth acquired its carbon, Li estimated the maximum amount of carbon Earth could contain. To do this, she compared how quickly a seismic wave travels through the core to the known sound velocities of the core. This told the researchers that carbon likely makes up less than half a percent of Earth’s mass. Understanding the upper bounds of how much carbon the Earth might contain tells the researchers information about when the carbon might have been delivered here.

--------------

Entire article available here.