Featured Post

The Declaration of White Independence: Fourth Political Theory

A unilateral assertion offered to and for consideration by the European Descended People of the fifty united States of America and all ...

01 February 2018

Whirling Galaxies Are Orderly and Neat, Defying Chaotic Dark Matter Cosmology

Astronomers have discovered that the smaller satellite galaxies around Centaurus A are engaged in a coordinated dance that seems out of sync with our understanding of the large-scale structure of the universe.

The discovery, described in the journal Science, could push physicists to redefine our understanding of dark matter, that mysterious stuff that forms the universe’s cosmic web.

Unlike normal matter, dark matter doesn’t interact with other matter. It can’t be seen or touched. And yet we know it must be there because there’s so much of it that its gravitational influence affects the spinning of galaxies. There’s more than five times as much dark matter as there is normal matter — normal matter being the stuff that makes up the stars, the galaxies, Earth and every living thing that inhabits it.

There are a lot of theories to explain what dark matter is. Currently, the prevailing idea is that “cold dark matter” forms giant clumps connected by dark matter filaments in a cosmic web.

Large galaxies like the Milky Way are surrounded by large spherical “halos” of dark matter. These galaxies also typically have a sizable coterie of smaller satellite galaxies around them. According to our understanding of dark matter, those satellite galaxies should be distributed all around their galactic host, said study coauthor Marcel Pawlowski, an astrophysicist at UC Irvine.

“They should be rather randomly distributed and move in more or less random directions if we believe our current understanding of cosmology — but they don’t really,” Pawlowski said.

Take our home galaxy, the Milky Way. Out of 11 satellite galaxies with known velocities, eight seem to orbit in a tight disc that’s perpendicular to the plane of the spiral galaxy. (There could be more galaxies; we just can’t see them.) The same pattern seems to apply to a number of the satellites around our galactic neighbor, Andromeda: 15 out of 27 surveyed galaxies are arranged in a narrow plane around the host galaxy.

But many scientists figured that the Milky Way (and Andromeda) must be the exception rather than the rule.

“Many astronomers have been concerned about drawing conclusions from the nearest galaxy systems: The census of Milky Way satellite galaxies might be affected by the gas and stars in the Galaxy’s disk, and it is not currently possible to measure motions perpendicular to the plane of satellites in Andromeda, meaning its long-term stability remains unknown,” Michael Boylan-Kolchin of the University of Texas at Austin, who was not involved in the study, wrote in a commentary.

For this paper, an international team of researchers looked outside of our own neighborhood for answers. They focused on the galaxy Centaurus A, which lies about 13 million light years away. Centaurus A is an elliptical galaxy that’s also surrounded by an array of satellites. Perhaps studying its companions would shed light on whether the Milky Way was the exception or the rule.

Using archived data, the researchers looked at velocity data for 16 of the known satellite galaxies around Centaurus A. They found that 14 of them appeared to be moving in a common plane around the larger galaxy, not at random. That plane appears to be roughly perpendicular to the dusty disk that surrounds the elliptical galaxy.

Under the current dark matter model, this sort of alignment is supposed to be a one-in-a-thousand sort of event, the scientists said. So what does it mean that the three galaxies that scientists have looked at so far all share the same supposedly rare pattern?

Perhaps these systems were all created by galaxies merging together, which could potentially explain their movement patterns without coming into conflict with our understanding of dark matter, scientists said.

If not, it could mean that our ideas about dark matter need to be tweaked — or perhaps even revised entirely, Pawlowski said. Perhaps dark matter doesn’t exist, and there are simply changes to the behavior of gravity in different situations that make it seem like some kind of invisible mass is at work. But modifying models of how gravity works is much easier said than done.

“We kind of know where we have our problems — we just haven’t figured out how to solve them,” he said. “I think we should be more open-minded and consider alternative approaches.”

One of the next steps, he added, would be to continue surveying more large galaxies and their satellites to see which configuration is truly more prevalent than the other.

“We really want to understand it in a global sense,” he said.

In any case, any change that moves our understanding forward would be welcomed by the physics community, Boylan-Kolchin said.

“Perhaps most excitingly, any potential resolution of the puzzle of satellite planes is interesting,” he wrote. “At worst, we improve our understanding of galaxy formation; at best, we are led to a deeper understanding of the laws of physics.”

New Study Links Human Consciousness to a Law That Governs the Universe

Our species has long agonized over the concept of human consciousness. What exactly causes it, and why did we evolve to experience consciousness? Now, a new study has uncovered a clue in the hunt for answers, and it reveals that the human brain might have more in common with the universe than we could have imagined.

According to a team of researchers from France and Canada, our brains might produce consciousness as something of a side effect of increasing entropy, a process that has been taking place throughout the universe since the Big Seed

Their study has been accepted for publication in the journal Physical Review E.

The concept of entropy is famously confusing, and the definition has evolved over time. Essentially, entropy is a thermodynamic property that refers to the degree of disorder or randomness in a system. It can be summed up as the description of a system’s progression from order to disorder.

The second law of thermodynamics states that entropy can only remain constant or increase within a closed system — a system cannot move from high entropy to low entropy without outside interference. A common example that demonstrates entropy is an ice cube melting — the cube is in a state of low entropy, but as it melts and disorder grows, entropy increases.

Many physicists think that the universe itself is in a constant state of increasing entropy. When the Big Seed occurred, the universe was in a state of low entropy, and as it continues to gradually spread out, it is growing into a higher entropy system. Based on this new study, our brain may be undergoing something similar, and consciousness happens to be a side effect of the process.

To see how the concept of entropy could be applied to the human brain, the researchers analyzed the amount of order in our brains while we’re conscious compared to when we’re not. They did this by modeling the networks of neurons in the brains of nine participants, seven of whom had epilepsy.

They looked at whether or not neurons were oscillating in phase with one another as this could tell them if the brain cells were linked. They compared observations from when patients were awake, when they were asleep, and when patients with epilepsy were having seizures.

The researchers found that the participants’ brains displayed higher entropy when fully conscious. “We find a surprisingly simple result: normal wakeful states are characterized by the greatest number of possible configurations of interactions between brain networks, representing highest entropy values,” the team wrote in the study.

This finding prompted the researchers to suggest that consciousness might be a side effect of a system working to maximize information exchange. In other words, human consciousness emerges due to increasing entropy.

While the team’s theory is exciting and will likely lead to further research exploring a potential link between human consciousness and entropy, it is far from conclusive. The study’s sample size was exceptionally small, so they’ll need to replicate their results on larger groups and different types of brain states. Still, it provides a fascinating explanation for human consciousness and may be the clue that eventually helps us fully understand the strange phenomenon.

30 January 2018

What would it have been like to witness the Big Seed?

Something wonderful happened about 13.8 billion years ago. Everything in the universe was created in an instant as an infinitesimally small point of energy: the Big Seed. We know that this event happened, as the universe is constantly expanding and galaxies are moving away from us. The more we peer into the past, the smaller it gets – that’s how we know it must have once been infinitesimally small, and that there must have been a beginning.

But of course there weren’t any humans around to see how it all started. What would it have been like – what would we have seen and felt? Now new research posted on the open science repository ArXiv, has investigated the amount of light available in the newborn universe to offer some clues.

The universe may seem dark and cold now, but there is a lot of light around. Humans can see some of this, but there’s also light at frequencies that we can’t see. The night sky, for example, appears dark but in fact glows at a frequency of light invisible to human eyes. Still, we can see this light using microwave detectors and it is a light that fills space and is practically exactly the same wherever we look.

The light that fills space now only warms the universe to on average 2.7 degrees above absolute zero – or -270°C. In the future, as the universe continues to expand at an ever-increasing rate, the light will dilute away and the cosmic weather forecast predicts that the temperature will slowly approach the coldest possible temperature of -273°C.

However, run the clock back and it turns out that we arrived here from much warmer climes. In the past, when the universe was smaller and more compressed, the light that filled space was squeezed to higher frequencies and hotter temperatures.

Almost everyone has experienced the physics behind this cooling: when you use a spray can of deodorant it feels cold because the gas has cooled as it expands. This is similar to what happened to the light in the universe as it expanded. That means that if we go all the way and start at the beginning we’ll find that the night sky would have looked and felt very different to what we are now so familiar with.

    … and there was light

In the Big Seed, space was suffused with light. A fraction of a second after the event, the universe was over a million trillion times smaller than an atom. It was also hot: a septillion (one followed by 24 zeroes) times hotter than the centre of the sun.

From this small and hot beginning, the expansion and cooling started. In this early stage, the universe was extremely bright and at frequencies of light that humans cannot see. There were no stars, only a uniform and formless soup of particles. In opening your eyes to the night sky – if such a thing were possible in the moment before you burned up – you would have been instantly blinded by the intensity of the light (even light outside visible frequencies can harm our eyes).

In the Big Seed, space was suffused with light. A fraction of a second after the event, the universe was over a million trillion times smaller than an atom. It was also hot: a septillion (one followed by 24 zeroes) times hotter than the centre of the sun.

From this small and hot beginning, the expansion and cooling started. In this early stage, the universe was extremely bright and at frequencies of light that humans cannot see. There were no stars, only a uniform and formless soup of particles. In opening your eyes to the night sky – if such a thing were possible in the moment before you burned up – you would have been instantly blinded by the intensity of the light (even light outside visible frequencies can harm our eyes).

This would have been the case until the universe became tolerable to human eyes after about 1.2m years. At this point, there were atoms around. They began to form about 370,000 years after the Big Seed. This may seem like a long time, but it isn’t really when you consider that the universe is nearly 14 billion years old. At this time, the sky would have glowed with the colour and temperature of a candle (the hottest part of a candle is 1,400°C). So while we could have read by the light of the night sky, we would still have been burnt to a crisp while doing so.

The sky would have glowed, slowly becoming dimmer and redder for another 4.6m years, before finally becoming black to human eyes. There were still no stars, so the night sky would have been uniformly and totally dark. However it would have still been very hot and baked any human observer with heat like a very hot oven.

… and there was Light

As the universe continued to expand, the sky would have remained dark but the temperature would have become more tolerable. It would take another 4.3m years, until the universe was about 10m years old, for the temperature to become bearable – about the same as a sauna. Then another 1m years to reach the temperature of a nice cup of tea, or a warm bath.

You could have worn summer clothes for another 5m years, but it would have started to get a bit chilly around 15m years after the Big Seed, and a jumper would be required. Freezing temperatures – minus figures – began at about 16m years. After about 110m years, the universe had cooled to the temperature of liquid nitrogen.

But if you could have somehow survived these freezing temperatures and an ever cooling universe, then after about 150m years the night sky would have changed. From its uniform and formless beginnings, matter was slowly clumping together, because of gravity, in the dark. In the clumps of matter, a twinkling would have appeared and, at least in some small patches, like the one we now live in, light and warmth returned for a second time. This was when the first stars began to form, and our familiar night sky was born.

08 January 2018

Supercomputer simulations: Closing in on the story of our cosmic origins

Prof Romeel Davé, Chair of Physics at the University of Edinburgh explores how supercomputer simulations help to reveal how galaxies like our Milky Way arose from the Big Seed

Why does the Universe look the way it does? This fundamental question has captivated humankind from the earliest days, spawning creation myths in every culture passed down through generations. Today, modern telescopes show us a fascinatingly complex Universe highlighted by billions of galaxies in a wide range of shapes, sizes and colours.

A modern creation story must account for this stunning diversity of galaxies and its emergence from the Big Seed. Galaxy formation simulators like myself use supercomputers to build an origins story based on the principles of physical laws rather than mythology. It is an epic challenge that will be a defining achievement for forthcoming generations.

Galaxy formation simulations aim to recreate the evolution of the Universe from the Big Seed until today using only the laws of physics and powerful supercomputers. Such simulations concurrently model the evolution of dark matter, dark energy, gas (in various ionization states), heavy elements, stars and black holes, starting from the glass-smooth state seen as the Cosmic Microwave Background, using the equations of gravity, hydrodynamics, radiation and nucleosynthesis.

The result is a model Universe representing galaxies, intergalactic gas and black holes. By comparing to state-of-the-art observations and identifying successes and failures of model predictions, theorists like myself iteratively improve our models to better constrain the physical processes that give rise to galaxies and other cosmic systems.

The role of galaxy formation simulations in astrophysics has grown exponentially in recent times, owing both to their fidelity and range of applicability. They have emerged as an essential synergistic complement to observational studies. New billion-dollar telescopes such as the James Webb Space Telescope, while immensely powerful, are intrinsically limited to detecting only one portion of the electromagnetic spectrum. Simulations are required to assemble these multi-wavelength datasets into a coherent physical scenario for how the observed objects came to be. Today, virtually no large extragalactic survey project gets approved without a dedicated simulation modelling component.

Galaxy formation simulations have improved dramatically in their realism and sophistication over the past decade, driven by synergistic observations and ever-faster computers. Modern simulations utilise millions of CPU hours on leading supercomputers. The Illustris (U.S.), EAGLE (Europe) and my group’s Mufasa (Africa) simulations, among others, now achieve unprecedented levels of realism.

We are constantly improving such simulations by employing a multi-scale approach to connect sub-parsec scale processes, such as star formation and black hole accretion with megaparsec-scale structure driven by dark matter and dark energy. Despite impressive progress, the task remains far from finished. The daunting range of physical and temporal scales remains impossible to simulate simultaneously even on the world’s largest supercomputers and it remains far from clear that we have identified (let alone understand) all the relevant physical processes for growing galaxies.

Perhaps the longest-lasting legacy of galaxy formation simulations is that they provide, for the first time, a full 3-D movie of how our Universe came to be. The impact of being able to visualise how galaxies like our own Milky Way and stars like our Sun emerged from the Big Seed cannot be overstated for both scientists and the general public. Combined with chemistry and biology that takes us from the formation of the Earth until human life today, we are closing in on completing humankind’s first scientifically accurate story of our cosmic origins.

12 December 2017

Life's building blocks observed in spacelike environment

Where do the molecules required for life originate? It may be that small organic molecules first appeared on earth and were later combined into larger molecules, such as proteins and carbohydrates. But a second possibility is that they originated in space, possibly within our solar system. A new study, published this week in the Journal of Chemical Physics, from AIP Publishing, shows that a number of small organic molecules can form in a cold, spacelike environment full of radiation.

Investigators at the University of Sherbrooke in Canada have created simulated space environments in which thin films of ice containing methane and oxygen are irradiated by electron beams. When electrons or other forms of radiation impinge on so-called molecular ices, chemical reactions occur and new molecules are formed. This study used several advanced techniques including electron stimulated desorption (ESD), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD).

The experiments were carried out under vacuum conditions, which both is required for the analysis techniques employed and mimics the high vacuum condition of outer space. Frozen films containing methane and oxygen used in these experiments further mimic a spacelike environment, since various types of ice (not just frozen water) form around dust grains in the dense and cold molecular clouds that exist in the interstellar medium. These types of icy environments also exist on objects in the solar system, such as comets, asteroids and moons.

All of these icy surfaces in space are subjected to multiple forms of radiation, often in the presence of magnetic fields, which accelerate charged particles from the stellar (solar) wind toward these frozen objects. Previous studies investigated chemical reactions that might occur in space environments through the use of ultraviolet or other types of radiation, but this is a first detailed look at the role of secondary electrons.

Copious amounts of secondary electrons are produced when high-energy radiation, such as X-rays or heavy particles, interact with matter. These electrons, also known as low-energy electrons, or LEES, are still energetic enough to induce further chemistry. The work reported this week investigated LEEs interacting with icy films. Earlier studies by this group considered positively charged reaction products ejected from ices irradiated by LEEs, while the work reported this week extended the study to include ejected negative ions and new molecules that form but remain embedded in the film.

The research group found that a variety of small organic molecules were produced in icy films subjected to LEEs. Propylene, ethane and acetylene were all formed in films of frozen methane. When a frozen mixture of methane and oxygen was irradiated with LEEs, they found direct evidence that ethanol was formed.

Indirect evidence for many other small organic molecules, including methanol, acetic acid and formaldehyde was found. In addition, both X-rays and LEEs produced similar results, although at different rates. Thus, it is possible that life's building blocks might have been made through chemical reactions induced by secondary electrons on icy surfaces in space exposed to any form of ionizing radiation.

02 December 2017

Pluto, Other Faraway Worlds May Have Buried Oceans

Our solar system may harbor many more potentially habitable worlds than scientists had thought.

Subsurface oceans could still slosh beneath the icy crusts of frigid, faraway worlds such as the dwarf planets Pluto and Eris, kept liquid by the heat-generating tug of orbiting moons, according to a new study. 

"These objects need to be considered as potential reservoirs of water and life," lead author Prabal Saxena, of NASA's Goddard Space Flight Center in Greenbelt, Maryland, said in a statement. "If our study is correct, we now may have more places in our solar system that possess some of the critical elements for extraterrestrial life."

Underground oceans are known, or strongly suspected, to exist on a number of icy worlds, including the Saturn satellites Titan and Enceladus and the Jovian moons Europa, Callisto and Ganymede. These oceans are kept liquid to this day by "tidal heating": The powerful gravitational pull of these worlds' giant parent planets stretches and flexes their interiors, generating heat via friction. 

The new study suggests something similar may be going on with Pluto, Eris and other trans-Neptunian objects (TNOs).

Many of the moons around TNOs are thought to have coalesced from material blasted into space when objects slammed into their parent bodies long ago. That's the perceived origin story for the one known satellite of Eris (called Dysnomia) and for Pluto's five moons (as well as for Earth's moon). 

Such impact-generated moons generally begin their lives in relatively chaotic orbits, team members of the new study said. But over time, these moons migrate to more-stable orbits, and as this happens, the satellites and the TNOs tug on each other gravitationally, producing tidal heat.

Saxena and his colleagues modeled the extent to which this heating could warm up the interiors of TNOs — and the researchers got some intriguing results.

"We found that tidal heating can be a tipping point that may have preserved oceans of liquid water beneath the surface of large TNOs like Pluto and Eris to the present day," study co-author Wade Henning, of NASA Goddard and the University of Maryland, said in the same statement.

As the term "tipping point" implies, there's another factor in play here as well. It's been widely recognized that TNOs could harbor buried oceans thanks to the heat produced by the decay of the objects' radioactive elements. But just how long such oceans could persist has been unclear. This type of heating peters out eventually, as more and more radioactive material decays into stable elements. And the smaller the object, the faster it cools down.

Tidal heating may do more than just lengthen subsurface oceans' lives, researchers said.

26 November 2017

Space dust may transport life between worlds: cosmic speciation

Life on our planet might have originated from biological particles brought to Earth in streams of space dust, a study suggests.

Fast-moving flows of interplanetary dust that continually bombard our planet’s atmosphere could deliver tiny organisms from far-off worlds, or send Earth-based organisms to other planets, according to the research.

The dust streams could collide with biological particles in Earth’s atmosphere with enough energy to knock them into space, a scientist has suggested.
Such an event could enable bacteria and other forms of life to make their way from one planet in the solar system to another and perhaps beyond.

The finding suggests that large asteroid impacts may not be the sole mechanism by which life could transfer between planets, as was previously thought.

The research from the University of Edinburgh calculated how powerful flows of space dust – which can move at up to 70 km a second – could collide with particles in our atmospheric system.

It found that small particles existing at 150 km or higher above Earth’s surface could be knocked beyond the limit of Earth’s gravity by space dust and eventually reach other planets.

The same mechanism could enable the exchange of atmospheric particles between distant planets.

 Some bacteria, plants and small animals called tardigrades are known to be able to survive in space, so it is possible that such organisms – if present in Earth’s upper atmosphere – might collide with fast-moving space dust and withstand a journey to another planet.

The study, published in Astrobiology, was partly funded by the Science and Technology Facilities Council.

“The proposition that space dust collisions could propel organisms over enormous distances between planets raises some exciting prospects of how life and the atmospheres of planets originated. The streaming of fast space dust is found throughout planetary systems and could be a common factor in proliferating life,” says Professor Arjun Berera.


A new species can evolve in as few as two generations, researchers have found, shattering the orthodox position that speciation is a process that occurs slowly over a long time.

Ironically, the case study that led to this startling conclusion – detailed in a paper in the journal Science – concerns the finches of the Galapagos islands, the very collection of birds that helped Charles Darwin formulate his theory regarding the role of natural selection in evolution.

A team of researchers led by Leif Andersson from Uppsala University, in Sweden, report the emergence of a new species of finch, dubbed Big Bird, arising from an initial cross breeding between two species, the large cactus finch (Geospiza conirostris) and the medium ground finch (Geospiz fortis). From a first chance encounter, a new lineage which boasts a unique beak shape, unique vocalisations, and the inability to breed with other finch species emerged.

The Big Bird today comprises only about 30 individuals – all fiercely inbred, but meeting the definition of distinct species, nonetheless.

The case study is watertight because the set-up for the foundation mating between the two originator species was observed by a pair of scientists from Princeton University, who were visiting the Galapagos island of Daphne Major at the time.

The year was 1981 and evolutionary biologists Rosemary and Peter Grant had been studying the finches of the island group. When they noticed a strange bird with a largish beak and unusual song on Daphne Major, therefore, they knew immediately it was not one of the three finch species native to the place.

"We didn’t see him fly in from over the sea, but we noticed him shortly after he arrived,” recalls Peter Grant. “He was so different from the other birds that we knew he did not hatch from an egg on Daphne Major.”

It turned out the intruder was from a species resident on Espanola Island, more than 100 kilometres away. Unable to return and thus find a mate from its own species, the finch somehow managed to mate successfully with a local girl.

Isolation is a critical step in speciation. The successful interbreeding would never have happened had not the male finch been somehow massively blown off course and – remarkably – found landfall on another tiny speck in the Pacific. Thus, if not for outrageous fortune, the cactus finch and the ground finch would not have challenged another fundamental definition of “species” – the inability to produce fertile offspring with a member of a different species.

For the resultant offspring, however, the results were potentially dire. The baby finches were neither one nor the other, and developed with beaks and calls that were unmatched among the resident species. Like isolated populations of humans have occasionally been known to do, therefore, and perhaps equally unwisely, they turned for attention to their own siblings.

The Grants, having taken an initial blood sample from the outsider, continued to monitor the little population of Big Birds, taking blood from the subsequent six generations.

Now, Andersson and his colleagues from Uppsala have analysed the DNA collected from each of those generations. They conclude that the Big Birds quickly developed unique structural characteristics with which they were able to forge an entirely new environmental niche that did not put them in competition with the more numerous resident finch species.

“It is very striking that when we compare the size and shape of the Big Bird beaks with the beak morphologies of the other three species inhabiting Daphne Major, the Big Birds occupy their own niche in the beak morphology space,” says co-author Sangeet Lamichhaney.

“Thus, the combination of gene variants contributed from the two interbreeding species in combination with natural selection led to the evolution of a beak morphology that was competitive and unique.”

He adds that a naturalist visiting Great Daphne today and unaware of the Big Birds’ history would have no reason to think the species was anything but ancient and firmly rooted on the island.

With only small numbers and a shallow genepool, of course, there is no guarantee of the new species’ robust and continued survival. Andersson notes that this type of emergence may have happened many times before, the results lost after a few generations to extinction.

“We have no indication about the long-term survival of the Big Bird lineage, but it has the potential to become a success, and it provides a beautiful example of one way in which speciation occurs,” he says.

19 November 2017

ESO's Journey to the Most Remote Galaxy in the Observable Universe

An international team of astronomers using the European Southern Observatory (ESO) Very Large Telescope high in the mountains of Chile measured the distance to the most remote galaxy so far. This is the first time that astronomers have been able to confirm that they are observing a galaxy as it was in the era of reionization — when the first generation of brilliant stars was making the young Universe transparent and ending the cosmic Dark Ages.

A team of astronomers used ESO's Very Large Telescope, the VLT, to confirm that a galaxy that had previously been spotted in images from the NASA/ESA Hubble Space Telescope is in fact the most distant object that is ever been identified in the Universe.

Studying these first galaxies is extremely difficult; they are very faint and small and by the time their dim light gets to Earth it falls mostly in the infrared part of the spectrum because it has been stretched by the expansion of the Universe.

To make matters worse, at this very early time, less than a billion years after the Big Seed, the Universe was not completely transparent. It was filled with hydrogen which acted kind of like a fog and absorbed the ultraviolet radiation from the young galaxies. This is the first time that ESO astronomers managed to obtain spectroscopic observations of a galaxy from the era of reionization, in other words from the time when the Universe was still clearing out the hydrogen fog.

Despite the difficulties of finding these early galaxies, the new Wide Field Camera 3 on the NASA/ESA Hubble Space Telescope discovered several very good candidate objects earlier in 2010.

They were thought to be galaxies shining in the early Universe at redshifts greater than eight, but confirming the distances to such faint and remote objects is an enormous challenge and can only reliably be done using spectroscopy from very large ground-based telescopes.

The team was excited to find that if you combine the huge light collecting power of the VLT, with the sensitivity of its infrared spectroscopic instrument, SINFONI, and if you then use a very long exposure time you just might be able to detect the faint glow from one of these very remote objects and then go on to measure its distance.

A 16 hour exposure with the VLT and SINFONI of the galaxy UDFy-38135539 did indeed show the very faint glow from hydrogen at a redshift of 8.6, which means that this light left the galaxy when the Universe was only about 600 million years old. This is the most distant galaxy ever reliably confirmed.

One of the puzzling things about this discovery is that the ultraviolet radiation emitted by the galaxy does not actually seems to be strong enough to be able to clear out the hydrogen fog around the galaxy.

So one possible explanation is that there must be other galaxies, probably fainter and less massive neighbors, that helped ionize the hydrogen in the region of space around the galaxy, thus making it transparent.

Without this additional help the brilliant light from the main galaxy would have been trapped in the surrounding hydrogen fog and it could not have even started its 13 billion-year journey towards Earth.

17 November 2017

Zimbabweimerica: Leipzig University considers firing law professor over call for ‘White Europe’

“cosmopolitan” and “international” = no-go zones for Whites

“xenophobic” = opposing White genocide

“intolerant” = advocating self-preservation

"opinions” = beliefs you may not assert

Welcome to Zimbabweimerica, Whitey.

“We will now begin investigations and examine the employment law measures against Professor Rauscher,” announced Dr. Zaius.



16 November 2017

Scientists Have Discovered a New Planet Close to Earth. Here’s Why It's So Exciting

If life is lurking somewhere in space, it’s done an awfully good job of hiding itself so far. But the jig may be up now that we have a better idea of where to look. That’s clearer than ever with the announcement in the journal Astronomy and Astrophysics of a newly discovered exoplanet orbiting an otherwise unremarkable star named Ross 128. Not only is the planet precisely the kind of place that could support biology, it’s located right down the street by cosmic standards — just 11 light-years from Earth.

The new world, prosaically named Ross 128 b, was discovered by a European telescope in the Chilean desert that looks for planets by what’s known as the radial velocity method. Even worlds orbiting the nearest stars are impossible to see by conventional telescopes. That’s partly because the planets are so tiny, in relative terms, and partly because the glare from the star washes out the view of anything nearby, much the way the glare from a streetlight makes it impossible to see a moth fluttering next to it.

Instead, astronomers look for the tiny wobble in the star that’s caused by the gravitational tugging of an orbiting body. If you know how to read the wobble you can learn a lot about the planet that’s causing it, and in this case that analysis is yielding some happy surprises.

According to the five-nation team of researchers who made the new discovery, Ross 128 b is no bigger than 1.35 times the size of Earth — very much the kind of planet that would have a solid surface where life could emerge. It orbits its parent star once every 9.9 days — an exceedingly fleeting year caused by the fact that the planet is 20 times closer to its star than Earth is to the sun. That ought to make the planet blisteringly hot, except that Ross 128 is a red dwarf, a far smaller, far cooler star than our yellow, so-called Class G star.

Even orbiting so close, Ross 128 b could thus have a surface temperature that averages about 269 degrees K, which sounds nasty until you realize that that comes out to about 73 degrees F (23 degrees C). What’s more, the planet rotates relatively slowly, meaning that if it has an atmosphere — by no means a sure thing — it would not have flung it off the way a rapidly spinning planet would over time.

But it’s something else in the nature of the star, not the planet, that makes the new announcement especially promising. We know of only one planet in the universe — our own — that harbors life, and so it has always made scientific sense to concentrate our search for extraterrestrial biology on planets circling sunlike stars. Those stars, however, are relatively rare, while red dwarfs make up perhaps 75% of all of the stars in the galaxy. Simple probability, then, says that they might be a far better place to go looking for living planets, provided those planets cuddle up close to the star’s hearth the way Ross 128 b does.

This is not the first time astronomers have discovered precisely this kind of Earth-like planet orbiting comfortably close to a red dwarf. Just last summer, a team of researchers who also used the wobble method discovered a planet orbiting an even closer red dwarf; indeed that dwarf, Proxima Centauri, is closer to Earth than any star in the cosmos, just 4.2 light-years away.

But the planet, Proxima Centauri b, faces some challenges Ross 128 b doesn’t. Red dwarfs can be volatile, sending out periodic flares that could blowtorch any atmosphere on a nearby planet off into space and destroy any life that might survive with their lethal levels of X-ray and ultraviolet radiation. In 2016, a team from the Smithsonian Astrophysical Observatory detected 66 separate flare events on Proxima Centauri. That would not necessarily be fatal to life on the nearby planet, but it wouldn’t do it any favors either. Ross 128, by contrast, appears to be a quieter star, with less frequent flaring — which is characteristic of more mature red dwarfs, further along in their life cycles.

31 October 2017

NASA finds 20 potentially habitable worlds 'hiding in plain sight'

Stargazers have discovered 20 worlds "hiding in plain sight" which they believe could be habitable.

Analysis of data from the Kepler space telescope revealed a list of planets that orbit stars like our own sun.

Each potential new world comes with varying orbit times, including one that takes the equivalent of 395 Earth days to circle its star and another which takes just 18.

The exoplanet with a 395-day year is one of the most exciting, according to Jeff Coughlin, the Kepler team leader who helped analyse the data.

It is about 97 per cent the size of Earth but colder and more like our tundra regions.

Despite its chilly climate, it is still warm and large enough to hold liquid water - which is vital for life.

Coughlin told New Scientist: "If you had to choose one to send a spacecraft to, it’s not a bad option."

The planets will form part of an investigation from the Hubble Space Telescope.

Earlier this year the Kepler spacecraft has detected 219 new exoplanet candidates – and ten could be habitable.

There are around 4,034 observed potential planets in our galaxy, according to Nasa's Ames Research Center.

The centuries-old hunt for other worlds like our own was recently rejuvenated thanks to the Kepler Telescope, which is currently orbiting Earth.

Scientists have spotted thousands of contenders after sifting through data collected by the instrument.

They are hoping to find terrestrial planets - around one half to twice the size of our planet and in the habitable zone.

The Kepler telescope began observing a fixed point in the Milky Way back in 2009 but suffered a technical glitch that put an end to its work in 2013.

A second mission was launched again in 2014 and will continue to send data back until 2018.

There are high hopes that humans will soon colonise Mars, in our very own solar system.

Tesla billionaire has made public his bold plans to send humans to Mars by 2024.

29 October 2017

Fireworks in Space: NASA’s Twins Study Explores Gene Expression

How Do Human Genes Act In Space?

NASA’s Twins Study preliminary results have revealed that space travel causes an increase in methylation, the process of turning genes on and off, and additional knowledge in how that process works.

“Some of the most exciting things that we’ve seen from looking at gene expression in space is that we really see an explosion, like fireworks taking off, as soon as the human body gets into space,” Twins Study Principal Investigator Chris Mason, Ph.D., of Weill Cornell Medicine, said. “With this study, we’ve seen thousands and thousands of genes change how they are turned on and turned off. This happens as soon as an astronaut gets into space, and some of the activity persists temporarily upon return to Earth.”

When retired twin astronaut Scott Kelly returned to Earth in March 2016, the Twins Study research intensified with investigators collecting samples from him and his twin brother, retired astronaut Mark Kelly. The researchers began combining the data and reviewing the enormous amount of information looking for correlations.

“This study represents one of the most comprehensive views of human biology,” Mason said. “It really sets the bedrock for understanding molecular risks for space travel as well as ways to potentially protect and fix those genetic changes.”

Final results for the Twins Study are expected to be published in 2018.

NASA's Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to astronaut health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of a program focused on: human health, performance, and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals and NASA centers to over 200 researchers in more than 30 states.

18 October 2017

Astronomers strike gold, witness massive cosmic phenomenon

Scientists witness huge cosmic crash, make major discoveries

By closely observing two stars in outer space, and watching as the stars crashed into each other, back in August, scientists in the U.S. and Europe say they've now been able to unlock multiple secrets.

It was a faint signal, but it told of one of the most violent acts in the universe, and it would soon reveal secrets of the cosmos, including how gold was created.

Forbes estimated that the collision created an estimated $10 octillion in gold, which is $10 billion, billion, billion.

What they witnessed in mid-August and revealed Monday was the long-ago collision of two neutron stars — a phenomenon California Institute of Technology's David H. Reitze called "the most spectacular fireworks in the universe."

The crash happened 130 million years ago, while dinosaurs still roamed on Earth, but the signal didn't arrive on Earth until Aug. 17 after traveling 130 million light-years. A light-year is 5.88 trillion miles.

"We already knew that iron came from a stellar explosion, the calcium in your bones came from stars and now we know the gold in your wedding ring came from merging neutron stars," said University of California Santa Cruz's Ryan Foley.

Measurements of the light and other energy emanating from the crash have helped scientists explain how planet-killing gamma ray bursts are born, how fast the universe is expanding, and where heavy elements like platinum and gold come from.

"This is getting everything you wish for," said Syracuse University physics professor Duncan Brown, one of more than 4,000 scientists involved in the blitz of science that the crash kicked off. "This is our fantasy observation."

It started in a galaxy called NGC 4993, seen from Earth in the Hydra constellation. Two neutron stars, collapsed cores of stars so dense that a teaspoon of their matter would weigh 1 billion tons, danced ever faster and closer together until they collided, said Carnegie Institution astronomer Maria Drout.

The crash, called a kilonova, generated a fierce burst of gamma rays and a gravitational wave, a faint ripple in the fabric of space and time, first theorized by Albert Einstein.

"This is like a cosmic atom smasher at a scale far beyond humans would be capable of building," said Andy Howell, a staff scientist at the Las Cumbres Observatory. "We finally now know what happens when an unstoppable force meets an immovable object and it's a kilonova."

Signals were picked up within 1.7 seconds of each other, by NASA's Fermi telescope, which detects gamma rays, and gravity wave detectors in Louisiana and Washington state that are a part of the LIGO Laboratory , whose founders won a Nobel Prize earlier this month. A worldwide alert went out to focus telescopes on what became the most well-observed astronomical event in history.

Before August, the only other gravity waves detected by LIGO were generated by colliding black holes. But black holes let no light escape, so astronomers could see nothing.

This time there was plenty to see, measure and analyze: matter, light, and other radiation. The Hubble Space Telescope even got a snapshot of the afterglow.

Finding where the crash happened wasn't easy. Eventually scientists narrowed the location down to 100 galaxies, began a closer search of those, and found it in the ninth galaxy they looked at.

It is like "the classic challenge of finding a needle in the haystack with the added challenge that the needle is fading away and the haystack is moving," said Marcelle Soares-Santos, an astrophysicist at Brandeis University.

"The completeness of this picture from the beginning to the end is unprecedented," said Columbia University physics professor Szabolcs Marka. "There are many, many extraordinary discoveries within the discovery."

The colliding stars spewed bright blue, super-hot debris that was dense and unstable. Some of it coalesced into heavy elements, like gold, platinum and uranium. Scientists had suspected neutron star collisions had enough power to create heavier elements, but weren't certain until they witnessed it.

"We see the gold being formed," said Syracuse's Brown.

Calculations from a telescope measuring ultraviolet light showed that the combined mass of the heavy elements from this explosion is 1,300 times the mass of Earth. And all that stuff — including lighter elements — was thrown out in all different directions and is now speeding across the universe.

Perhaps one day the material will clump together into planets the way ours was formed, Reitze said — maybe ones with rich veins of precious metals.

The crash also helped explain the origins of one of the most dangerous forces of the cosmos — short gamma ray bursts, focused beams of radiation that could erase life on any planet that happened to get in the way. These bursts shoot out in two different directions perpendicular to where the two neutron stars first crash, Reitze said.

Luckily for us, the beams of gamma rays were not focused on Earth and were generated too far away to be a threat, he said.

Scientists knew that the universe has been expanding since the Big Seed. By using LIGO to measure gravitational waves while watching this event unfold, researchers came up with a new estimate for how fast that is happening, the so-called Hubble Constant. Before this, scientists came up with two slightly different answers using different techniques. The rough figure that came out of this event is between the original two, Reitze said.

The first optical images showed a bright blue dot that was very hot, which was likely the start of the heavy element creation process amid the neutron star debris, Drout said. After a day or two that blue faded, becoming much fainter and redder. And after three weeks it was completely gone, she said.

This almost didn't happen. Eight days after the signal came through, the LIGO gravitational waves were shut down for a year's worth of planned upgrades. A month later the whole area where the crash happened would have been blocked from astronomers' prying eyes by the sun.

Scientists involved with the search for gravitational waves said this was the event they had prepared for over more than 20 years.

The findings are "of spectacular importance," said Penn State physicist Abhay Ashtekar, who wasn't part of the research. "This is really brand new."

Almost all of the discoveries confirmed existing theories, but had not been proven — an encouraging result for theorists who have been trying to explain what is happening in the cosmos, said France Cordova, an astrophysicist who directs the National Science Foundation.

"We so far have been unable to prove Einstein wrong," said Georgia Tech physics professor Laura Cadonati. "But we're going to keep trying."

11 October 2017

There's Another Big Gravitational Wave Announcement on The Way

LIGO and Virgo have announced that they're going to be holding a big press conference on Monday, 16 October at 10am EDT at the Press Club in Washington DC.

"The gathering will begin with an overview of new findings from LIGO, Virgo and partners that span the globe," the National Science Foundation announcement reads, "followed by details from telescopes that work with the LIGO and Virgo collaborations to study extreme events in the cosmos."

Gravitational waves were officially confirmed publicly for the first time in February 2016, when LIGO announced that it had detected the phenomenon caused by a collision between two black holes. Since then, gravitational waves have been detected three more times.

The most recent announcement was in September, when LIGO announced that its collaboration with interferometer Virgo had allowed a much more precise triangulation of the signal.

Prior to that announcement, speculation was flying that the discovery was a collision between two neutron stars, with visuals from optical telescopes.

This time, we're hesitant to make any speculation, other than it seems big. Representatives from 70 other observatories around the world will be at the event, and simultaneous briefings will also be taking place in London and Munich.

There will be two separate panel discussions at the main event, too. The first panel consists of directors and spokespersons from LIGO, Virgo and NASA.

The second panel includes people like David Sand, Nial Tanvir, Eleonora Troja and Andy Howell, who have all performed research into supernovas, and Marcelle Soares-Santos, who is pioneering the Dark Energy Survey's search for an optical counterpart to gravitational wave events.

We're getting pretty excited, you guys. Read more about the announcement here, and tune back into ScienceAlert for the big news on Monday!