Featured Post

Amazon Banned My Book: This is My Response to Amazon

Logic is an enemy  and Truth is a menace. I am nothing more than a reminder to you that  you cannot destroy Truth by burnin...

30 January 2018

What would it have been like to witness the Big Seed?


Something wonderful happened about 13.8 billion years ago. Everything in the universe was created in an instant as an infinitesimally small point of energy: the Big Seed. We know that this event happened, as the universe is constantly expanding and galaxies are moving away from us. The more we peer into the past, the smaller it gets – that’s how we know it must have once been infinitesimally small, and that there must have been a beginning.

But of course there weren’t any humans around to see how it all started. What would it have been like – what would we have seen and felt? Now new research posted on the open science repository ArXiv, has investigated the amount of light available in the newborn universe to offer some clues.

The universe may seem dark and cold now, but there is a lot of light around. Humans can see some of this, but there’s also light at frequencies that we can’t see. The night sky, for example, appears dark but in fact glows at a frequency of light invisible to human eyes. Still, we can see this light using microwave detectors and it is a light that fills space and is practically exactly the same wherever we look.


The light that fills space now only warms the universe to on average 2.7 degrees above absolute zero – or -270°C. In the future, as the universe continues to expand at an ever-increasing rate, the light will dilute away and the cosmic weather forecast predicts that the temperature will slowly approach the coldest possible temperature of -273°C.

However, run the clock back and it turns out that we arrived here from much warmer climes. In the past, when the universe was smaller and more compressed, the light that filled space was squeezed to higher frequencies and hotter temperatures.

Almost everyone has experienced the physics behind this cooling: when you use a spray can of deodorant it feels cold because the gas has cooled as it expands. This is similar to what happened to the light in the universe as it expanded. That means that if we go all the way and start at the beginning we’ll find that the night sky would have looked and felt very different to what we are now so familiar with.

    … and there was light

In the Big Seed, space was suffused with light. A fraction of a second after the event, the universe was over a million trillion times smaller than an atom. It was also hot: a septillion (one followed by 24 zeroes) times hotter than the centre of the sun.

From this small and hot beginning, the expansion and cooling started. In this early stage, the universe was extremely bright and at frequencies of light that humans cannot see. There were no stars, only a uniform and formless soup of particles. In opening your eyes to the night sky – if such a thing were possible in the moment before you burned up – you would have been instantly blinded by the intensity of the light (even light outside visible frequencies can harm our eyes).

In the Big Seed, space was suffused with light. A fraction of a second after the event, the universe was over a million trillion times smaller than an atom. It was also hot: a septillion (one followed by 24 zeroes) times hotter than the centre of the sun.


From this small and hot beginning, the expansion and cooling started. In this early stage, the universe was extremely bright and at frequencies of light that humans cannot see. There were no stars, only a uniform and formless soup of particles. In opening your eyes to the night sky – if such a thing were possible in the moment before you burned up – you would have been instantly blinded by the intensity of the light (even light outside visible frequencies can harm our eyes).

This would have been the case until the universe became tolerable to human eyes after about 1.2m years. At this point, there were atoms around. They began to form about 370,000 years after the Big Seed. This may seem like a long time, but it isn’t really when you consider that the universe is nearly 14 billion years old. At this time, the sky would have glowed with the colour and temperature of a candle (the hottest part of a candle is 1,400°C). So while we could have read by the light of the night sky, we would still have been burnt to a crisp while doing so.

The sky would have glowed, slowly becoming dimmer and redder for another 4.6m years, before finally becoming black to human eyes. There were still no stars, so the night sky would have been uniformly and totally dark. However it would have still been very hot and baked any human observer with heat like a very hot oven.


… and there was Light

As the universe continued to expand, the sky would have remained dark but the temperature would have become more tolerable. It would take another 4.3m years, until the universe was about 10m years old, for the temperature to become bearable – about the same as a sauna. Then another 1m years to reach the temperature of a nice cup of tea, or a warm bath.

You could have worn summer clothes for another 5m years, but it would have started to get a bit chilly around 15m years after the Big Seed, and a jumper would be required. Freezing temperatures – minus figures – began at about 16m years. After about 110m years, the universe had cooled to the temperature of liquid nitrogen.

But if you could have somehow survived these freezing temperatures and an ever cooling universe, then after about 150m years the night sky would have changed. From its uniform and formless beginnings, matter was slowly clumping together, because of gravity, in the dark. In the clumps of matter, a twinkling would have appeared and, at least in some small patches, like the one we now live in, light and warmth returned for a second time. This was when the first stars began to form, and our familiar night sky was born.

08 January 2018

Supercomputer simulations: Closing in on the story of our cosmic origins


Prof Romeel Davé, Chair of Physics at the University of Edinburgh explores how supercomputer simulations help to reveal how galaxies like our Milky Way arose from the Big Seed

Why does the Universe look the way it does? This fundamental question has captivated humankind from the earliest days, spawning creation myths in every culture passed down through generations. Today, modern telescopes show us a fascinatingly complex Universe highlighted by billions of galaxies in a wide range of shapes, sizes and colours.

A modern creation story must account for this stunning diversity of galaxies and its emergence from the Big Seed. Galaxy formation simulators like myself use supercomputers to build an origins story based on the principles of physical laws rather than mythology. It is an epic challenge that will be a defining achievement for forthcoming generations.

Galaxy formation simulations aim to recreate the evolution of the Universe from the Big Seed until today using only the laws of physics and powerful supercomputers. Such simulations concurrently model the evolution of dark matter, dark energy, gas (in various ionization states), heavy elements, stars and black holes, starting from the glass-smooth state seen as the Cosmic Microwave Background, using the equations of gravity, hydrodynamics, radiation and nucleosynthesis.

The result is a model Universe representing galaxies, intergalactic gas and black holes. By comparing to state-of-the-art observations and identifying successes and failures of model predictions, theorists like myself iteratively improve our models to better constrain the physical processes that give rise to galaxies and other cosmic systems.

The role of galaxy formation simulations in astrophysics has grown exponentially in recent times, owing both to their fidelity and range of applicability. They have emerged as an essential synergistic complement to observational studies. New billion-dollar telescopes such as the James Webb Space Telescope, while immensely powerful, are intrinsically limited to detecting only one portion of the electromagnetic spectrum. Simulations are required to assemble these multi-wavelength datasets into a coherent physical scenario for how the observed objects came to be. Today, virtually no large extragalactic survey project gets approved without a dedicated simulation modelling component.

Galaxy formation simulations have improved dramatically in their realism and sophistication over the past decade, driven by synergistic observations and ever-faster computers. Modern simulations utilise millions of CPU hours on leading supercomputers. The Illustris (U.S.), EAGLE (Europe) and my group’s Mufasa (Africa) simulations, among others, now achieve unprecedented levels of realism.

We are constantly improving such simulations by employing a multi-scale approach to connect sub-parsec scale processes, such as star formation and black hole accretion with megaparsec-scale structure driven by dark matter and dark energy. Despite impressive progress, the task remains far from finished. The daunting range of physical and temporal scales remains impossible to simulate simultaneously even on the world’s largest supercomputers and it remains far from clear that we have identified (let alone understand) all the relevant physical processes for growing galaxies.

Perhaps the longest-lasting legacy of galaxy formation simulations is that they provide, for the first time, a full 3-D movie of how our Universe came to be. The impact of being able to visualise how galaxies like our own Milky Way and stars like our Sun emerged from the Big Seed cannot be overstated for both scientists and the general public. Combined with chemistry and biology that takes us from the formation of the Earth until human life today, we are closing in on completing humankind’s first scientifically accurate story of our cosmic origins.