This artist's concept depicts a planetary system
A study by astrophysicists at the University of Toronto suggests that exoplanets - planets outside our solar system - are more likely to have liquid water and be more habitable than we thought.
"Planets with potential oceans could have a climate that is much more similar to Earth's than previously expected," said Jérémy Leconte, a postdoctoral fellow at the Canadian Institute for Theoretical Astrophysics (CITA) at the University of Toronto, and lead author of a study published today in Science Express.
Scientists have thought that exoplanets behave in a manner contrary to that of Earth - that is they always show their same side to their star. If so, exoplanets would rotate in sync with their star so that there is always one hemisphere facing it while the other hemisphere is in perpetual cold darkness.
Leconte's study suggests, however, that as exoplanets rotate around their stars, they spin at such a speed as to exhibit a day-night cycle similar to Earth.
"If we are correct, there is no permanent, cold night side on exoplanets causing water to remain trapped in a gigantic ice sheet. Whether this new understanding of exoplanets' climate increases the ability of these planets to develop life remains an open question."
Leconte and his team reached their conclusions via a three-dimensional climate model they developed to predict the effect of a given planet's atmosphere on the speed of its rotation, which results in changes to its climate," said Leconte. "Atmosphere is a key factor affecting a planet's spin, the impact of which can be of enough significance to overcome synchronous rotation and put a planet in a day-night cycle."