The human brain develops with an exquisitely timed choreography marked by distinct patterns of gene activity at different stages from the womb to adulthood, Yale researchers report in the Dec. 26 issue of the journal Neuron.
The Yale team conducted a large-scale analysis of gene activity in cerebral neocortex —an area of the brain governing perception, behavior, and cognition — at different stages of development.
The analysis shows the general architecture of brain regions is largely formed in the first six months after conception by a burst of genetic activity, which is distinct for specific regions of the neocortex. This rush is followed by a sort of intermission beginning in the third trimester of pregnancy. During this period, most genes that are active in specific brain regions are quieted — except for genes that spur connections between all neocortex regions.
Then in late childhood and early adolescence, the genetic orchestra begins again and helps subtly shape neocortex regions that progressively perform more specialized tasks, a process that continues into adulthood.